【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心,經(jīng)過(guò)A,C兩點(diǎn)且與BC邊交于點(diǎn)E,點(diǎn)D為CE的下半圓弧的中點(diǎn),連接AD交線段EO于點(diǎn)F,若AB=BF.
(1)求證:AB是⊙O的切線;
(2)若CF=4,DF= ,求⊙O的半徑r及sinB.

【答案】
(1)證明:連接OA、OD,如圖,

∵點(diǎn)D為CE的下半圓弧的中點(diǎn),

∴OD⊥BC,

∴∠EOD=90°,

∵AB=BF,OA=OD,

∴∠BAF=∠BFA,∠OAD=∠D,

而∠BFA=∠OFD,

∴∠OAD+∠BAF=∠D+∠BFA=90°,即∠OAB=90°,

∴OA⊥AB,

∴AB是⊙O切線


(2)解:OF=CF﹣OC=4﹣r,OD=r,DF=

在Rt△DOF中,OD2+OF2=DF2,即r2+(4﹣r)2=( 2,

解得r1=3,r2=1(舍去);

∴半徑r=3,

∴OA=3,OF=CF﹣OC=4﹣3=1,BO=BF+FO=AB+1.

在Rt△AOB中,AB2+OA2=OB2,

∴AB2+32=(AB+1)2,

∴AB=4,OB=5,

∴sinB= =


【解析】(1)連接OA、OD,如圖,根據(jù)垂徑定理得OD⊥BC,則∠D+∠OFD=90°,再由AB=BF,OA=OD得到∠BAF=∠BFA,∠OAD=∠D,加上∠BFA=∠OFD,所以∠OAD+∠BAF=90°,則OA⊥AB,然后根據(jù)切線的判定定理即可得到AB是⊙O切線;(2)先表示出OF=4﹣r,OD=r,在Rt△DOF中利用勾股定理得r2+(4﹣r)2=( 2 , 解方程得到r的值,那么OA=3,OF=CF﹣OC=4﹣3=1,BO=BF+FO=AB+1. 然后在Rt△AOB中利用勾股定理得AB2+OA2=OB2 , 即AB2+32=(AB+1)2 , 解方程得到AB=4的值,再根據(jù)三角函數(shù)定義求出sinB.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,CEAB于點(diǎn)E,BDAC于點(diǎn)D,BD,CE交于點(diǎn)O,且AO平分∠BAC,則圖中的全等三角形共有________對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABCDCB有公共邊BC,且AB=DC,作AEBC,DFBC,垂足分別為E、F,AE=DF,那么求證AC=BD時(shí),需要證明三角形全等的是Rt△ABE≌Rt△DCF,△AECDFB.說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A、B、C、D均在以BC為直徑的圓上,AD∥BC,AC平分∠BCD,∠ADC=120°,四邊形ABCD的周長(zhǎng)為10,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,轉(zhuǎn)盤上1、2、3、4四個(gè)數(shù)字分別代表雞、猴、鼠、羊四種生肖郵票(每種郵票各兩枚,雞年郵票面值“80分”,其它郵票都是面值“1.20元”),轉(zhuǎn)動(dòng)轉(zhuǎn)盤后,指針每落在某個(gè)數(shù)字所在扇形一次就表示獲得該種郵票一枚.
(1)任意轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,獲得猴年郵票的概率是
(2)任意轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,求獲得的兩枚郵票可以郵寄一封需2.4元郵資的信件的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、EBC上,連接AD、AE,如果只添加一個(gè)條件使∠DAB=∠EAC,則添加的條件不能為( )

A. BD=CE B. AD=AE C. DA=DE D. BE=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小張?jiān)谧约彝恋厣掀秸隽艘粔K苗圃,并將這塊苗圃分成了四個(gè)長(zhǎng)方形區(qū)域,其尺寸如圖所示圖中長(zhǎng)度單位:米,小張計(jì)劃在這四個(gè)區(qū)域上按圖中所示分別種植草本花卉 1 號(hào)、2 號(hào)、3 號(hào)、4 號(hào).

(1)用式子表示這塊苗圃的總面積;

(2)已知種植草本花卉 1 號(hào)、2 號(hào)、3 號(hào)、4 號(hào)的成本分別是每平方米 4 元、6 元、8 元、10 元.

①用式子表示小張?jiān)谶@塊苗圃上種植草本花卉的總成本;

②當(dāng) a=9 時(shí),求小張?jiān)谶@塊苗圃上種植草本花卉的總成本.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線EFMN相交于點(diǎn)O,∠MOE=30°,將一直角三角尺的直角頂點(diǎn)與點(diǎn)O重合,直角邊OAMN重合,OB∠NOE內(nèi)部.操作:將三角尺繞點(diǎn)O以每秒的速度沿順時(shí)針方向旋轉(zhuǎn)一周,設(shè)運(yùn)動(dòng)時(shí)間為t(s).

(1)當(dāng)t為何值時(shí),直角邊OB恰好平分∠NOE?此時(shí)OA是否平分∠MOE?請(qǐng)說(shuō)明理由;

(2)若在三角尺轉(zhuǎn)動(dòng)的同時(shí),直線EF也繞點(diǎn)O以每秒的速度順時(shí)針方向旋轉(zhuǎn)一周,當(dāng)一方先完成旋轉(zhuǎn)一周時(shí),另一方同時(shí)停止轉(zhuǎn)動(dòng).

當(dāng)t為何值時(shí),OE平分∠AOB?

②OE能否平分∠NOB?若能請(qǐng)直接寫出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,某商場(chǎng)有一雙向運(yùn)行的自動(dòng)扶梯,扶梯上行和下行的速度保持不變且相同,甲、乙兩人同時(shí)站上了此扶梯的上行和下行端,甲站上上行扶梯的同時(shí)又以0.8m/s的速度往上跑,乙站上下行扶梯后則站立不動(dòng)隨扶梯下行,兩人在途中相遇,甲到達(dá)扶梯頂端后立即乘坐下行扶梯,同時(shí)以0.8m/s的速度往下跑,而乙到達(dá)底端后則在原地等候甲.圖2中線段OB、AB分別表示甲、乙兩人在乘坐扶梯過(guò)程中,離扶梯底端的路程y(m)與所用時(shí)間x(s)之間的部分函數(shù)關(guān)系,結(jié)合圖象解答下列問(wèn)題:
(1)點(diǎn)B的坐標(biāo)是;
(2)求AB所在直線的函數(shù)關(guān)系式;
(3)乙到達(dá)扶梯底端后,還需等待多長(zhǎng)時(shí)間,甲才到達(dá)扶梯底端?

查看答案和解析>>

同步練習(xí)冊(cè)答案