7.絕對(duì)值不小于-1且小于3的所有整數(shù)的積為0.

分析 找出絕對(duì)值不小于-1且小于3的所有整數(shù),因?yàn)槔锩嬗幸粋(gè)0的存在,故這些整數(shù)的乘積為0.

解答 解:∵絕對(duì)值不小于-1且小于3的整數(shù)有:-2、-1、0、1、2,
(-2)×(-1)×0×1×2=0.
故答案為:0.

點(diǎn)評(píng) 本題考查的有理數(shù)的乘法,解題的關(guān)鍵是牢記0乘以任何數(shù)都得0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.計(jì)算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正確結(jié)果是( 。
A.2(a2+2)B.2(a2-2)C.2a3D.2a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.先化簡(jiǎn),再求代數(shù)式的值:($\frac{a-2}{{a}^{2}-1}-\frac{1}{a+1}$)$÷\frac{1}{a+1}$,其中a=$\sqrt{2}×\frac{\sqrt{6}}{2}+$($\sqrt{3}+1$)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在下列各數(shù):0,$\root{3}{-27}$,-2π,$\frac{22}{7}$,3.14,$\frac{{\sqrt{3}}}{2}$,6.3010010001(兩個(gè)1之間依次增加1個(gè)0),$\sqrt{8}$,無(wú)理數(shù)的個(gè)數(shù)是(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

2.關(guān)于x的一元二次方程(m-4)x2+2x+m2-m-12=0的一個(gè)根為0,那么m=-3,另一個(gè)根是$\frac{2}{7}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.先化簡(jiǎn),再求值:5(a2b-3ab2)-2(a2b-7ab2+1),其中a=-1,b=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

19.一幅長(zhǎng)80cm,寬50cm的矩形風(fēng)景畫的四周鑲一條金色紙邊,制成一副矩形掛圖,如果要使金邊的面積是整個(gè)掛圖的面積的$\frac{7}{27}$,求金色紙邊的寬為多少?若設(shè)金邊寬為x,則應(yīng)列方程為80×50=(80+2x)×(50+2x)×(1-$\frac{7}{20}$).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,在四邊形ABCD中,AD∥BC,AD:BC=1:2,AC、BD交于點(diǎn)O,記△AOD、△AOB、△BOC、△COD的面積分別為S1、S2、S3、S4,下列結(jié)論正確的是( 。
A.S1:S2=1:4B.S1:S3=1:2C.S1•S3=S22D.S1+S2=S3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)如圖1,試探究其中∠1,∠2與∠3,∠4之間的關(guān)系,并證明.
(2)用(1)中的結(jié)論解決下列問題:如圖2,AE、DE分別是四邊形ABCD的外角∠NAD、∠MDA的平分線,∠B+∠C=240°,求∠E的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案