【題目】如圖,在矩形ABCD中,EF分別是AD,BC的中點,連結(jié)AF,BECE,DF分別交于點MN,則四邊形EMFN(  )

A. 梯形B. 菱形

C. 矩形D. 無法確定

【答案】B

【解析】

求出四邊形ABFE為平行四邊形,四邊形BFDE為平行四邊形,根據(jù)平行四邊形的性質(zhì)得出BEFD,即MEFN,同理可證ENMF,得出四邊形EMFN為平行四邊形,求出ME=MF,根據(jù)菱形的判定得出即可.

連接EF

∵四邊形ABCD為矩形,

ADBC,AD=BC

又∵E,F分別為AD,BC中點,

AEBF,AE=BFEDCF,DE=CF

∴四邊形ABFE為平行四邊形,四邊形BFDE為平行四邊形,

BEFD,即MEFN,

同理可證ENMF,

∴四邊形EMFN為平行四邊形,

∵四邊形ABFE為平行四邊形,∠ABC為直角,

ABFE為矩形,

AF,BE互相平分于M點,

ME=MF,

∴四邊形EMFN為菱形.

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,反比例函數(shù)y的圖象與一次函數(shù)yk(x2)的圖象交點為A(3,2),B(xy)

(1)求反比例函數(shù)與一次函數(shù)的解析式及B點坐標;

(2)Cy軸上的點,且滿足△ABC的面積為10,求C點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的有(

①有理數(shù)包括正有理數(shù)和負有理數(shù); ②絕對值等于它本身的數(shù)是非負數(shù);③若|b|=|5|,則b=-5 ; ④當(dāng)b=2時,5|2b4|有最小值是5;⑤若、互為相反數(shù),則;⑥是關(guān)于、的六次三項式.

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,用直尺和圓規(guī)作∠BAD的平分線AGBC于點E.BF12,AB10,則AE的長為(  )

A. 16B. 15C. 14D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ADE+BCF=180°,BE平分∠ABC,∠ABC=2E.

1ADBC平行嗎?請說明理由;

2ABEF的位置關(guān)系如何?為什么?

3)若AF平分∠BAD,試說明:

①∠BAD=2F;②∠E+F=90°.

注:本題第(1)、(2)小題在下面的解答過程的空格內(nèi)填寫理由或數(shù)學(xué)式;第(3)小題要寫出解題過程.

解:(1ADBC,理由如下:

∵∠ADE+ADF=180°,(平角的定義)

ADE+BCF=180°,(已知)

∴∠ADF=______, ____________________________

ADBC ____________________________

2ABEF的位置關(guān)系是:_______________.

BE平分∠ABC (已知)

∴∠ABE=ABC. (角平分線的定義)

又∵∠ABC=2E, (已知),

即∠E=ABC,

∴∠E=_____. _____________________________

___________. _____________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】位于南岸區(qū)黃桷埡的文峰塔,有著平安寶塔之稱.某校數(shù)學(xué)社團對其高度 AB進行了測量.如圖,他們從塔底A的點B出發(fā),沿水平方向行走了13米,到達點C,然后沿斜坡CD繼續(xù)前進到達點D處,已知DC=BC.在點D處用測角儀測得塔頂A的仰角為42°(點A,B,C,D,E在同一平面內(nèi)).其中測角儀及其支架DE高度約為0.5米,斜坡CD的坡度(或坡比)i=1:2.4,那么文峰塔的高度AB約為( )(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

A. 22.5 B. 24.0 C. 28.0 D. 33.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】松雷中學(xué)圖書館近日購進甲、乙兩種圖書,每本甲圖書的進價比每本乙圖書的進價高20元,花780元購進甲圖書的數(shù)量與花540元購進乙圖書的數(shù)量相同.

1)求甲、乙兩種圖書每本的進價分別是多少元?

2)松雷中學(xué)計劃購進甲、乙兩種圖書共70本,總購書費用不超過4000元,則最多購進甲種圖書多少本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計劃組織全校1500名師生外出參加集體活動.經(jīng)過研究,決定租用當(dāng)?shù)刈廛嚬疽还?/span>60、兩種型號客車作為交通工具.

下表是租車公司提供給學(xué)校有關(guān)兩種型號客車的載客量和租金信息:

型號

載客量

租金單價

30

400

20

300

注:載客量指的是每輛客車最多可載該校師生的人數(shù).

學(xué)校租用型號客車輛,租車總費用為元.

(1)的函數(shù)解析式,請直接寫出的取值范圍;

(2)若要使租車總費用不超過22000元,一共有幾種租車方案?并結(jié)合函數(shù)性質(zhì)說明哪種租車方案最省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】,0)是軸上的一個動點,它與原點的距離的2倍為.

1)求關(guān)于的函數(shù)解析式,并在所給網(wǎng)格中畫出這個函數(shù)圖象;

2)若反比例函數(shù)的圖象與函數(shù)的圖象相交于點,且點的縱坐標為2.

①求k的值;

②結(jié)合圖象,當(dāng)時,寫出的取值范圍.

3)過原點的一條直線交0)于、兩點(點在點的右側(cè)),分別過點、軸和軸的平行線,兩平行線交于點,則△的面積是 .

查看答案和解析>>

同步練習(xí)冊答案