【題目】如圖1,正方形ABCD和正方形AEFG,連接DG,BE.
(1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點A旋轉(zhuǎn),如圖2,①線段DG與BE之間的數(shù)量關(guān)系是 ;②直線DG與直線BE之間的位置關(guān)系是 .
(2)探究:如圖3,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE,證明:直線DG⊥BE.
(3)應(yīng)用:在(2)情況下,連結(jié)GE(點E在AB上方),若GE∥AB,且AB=,AE=1,則線段DG是多少?(直接寫出結(jié)論)
【答案】(1)BE=DG,BE⊥DG;(2)證明見解析;(3)
【解析】
(1)先判斷出△ABE≌△ADG,進而得出BE=DG,∠ABE=∠ADG,再利用等角的余角相等即可得出結(jié)論;
(2)先利用兩邊對應(yīng)成比例夾角相等判斷出△ABE∽△ADG,得出∠ABE=∠ADG,再利用等角的余角相等即可得出結(jié)論;
(3)先求出BE,進而得出BE=AB,即可得出四邊形ABEG是平行四邊形,進而得出∠AEB=90°,求出BE,借助(2)得出的相似,即可得出結(jié)論.
(1)①∵四邊形ABCD和四邊形AEFG是正方形,
∴AE=AG,AB=AD,∠BAD=∠EAG=90°,
∴∠BAE=∠DAG,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴BE=DG;
②如圖2,延長BE交AD于G,交DG于H,
由①知,△ABE≌△ADG,
∴∠ABE=∠ADG,
∵∠AGB+∠ABE=90°,
∴∠AGB+∠ADG=90°,
∵∠AGB=∠DGH,
∴∠DGH+∠ADG=90°,
∴∠DHB=90°,
∴BE⊥DG
(2)∵四邊形ABCD與四邊形AEFG都為矩形,
∴∠BAD=∠DAG,
∴∠BAE=∠DAG,
∵AD=2AB,AG=2AE,
∴,
∴△ABE∽△ADG,
∴∠ABE=∠ADG,
∵∠AGB+∠ABE=90°,
∴∠AGB+∠ADG=90°,
∵∠AGB=∠DGH,
∴∠DGH+∠ADG=90°,
∴∠DHB=90°,
∴BE⊥DG;
(3)如圖4,(為了說明點B,E,F在同一條線上,特意畫的圖形)
∵EG∥AB,
∴∠DME=∠DAB=90°,
在Rt△AEG中,AE=1,
∴AG=2AE=2,
根據(jù)勾股定理得,EG=,
∵AB=,
∴EG=AB,
∵EG∥AB,
∴四邊形ABEG是平行四邊形,
∴AG∥BE,
∵AG∥EF,
∴點B,E,F在同一條直線上如圖5,
∴∠AEB=90°,
在Rt△ABE中,根據(jù)勾股定理得,BE==2,
由(3)知,△ABE∽△ADG,
∴,
∴,
∴DG=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組;請結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得____________________;
(Ⅱ)解不等式②,得____________________;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為_______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點A(﹣2,2)和點B(﹣3,﹣2)的位置如圖所示.
(1)作出線段AB關(guān)于y軸對稱的線段A′B′,并寫出點A、B的對稱點A′、B′的坐標(biāo);
(2)連接AA′和BB′,請在圖中畫一條線段,將圖中的四邊形AA′B′B分成兩個圖形,其中一個是軸對稱圖形,另一個是中心對稱圖形,并且線段的一個端點為四邊形的頂點,另一個端點在四邊形一邊的格點上.(每個小正方形的頂點均為格點).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥EF,DC⊥EF,垂足分別為B、C,且AB=CD,BE=CF.AF、DE相交于點O,AF、DC相交于點N,DE、AB相交于點M.
(1)請直接寫出圖中所有的等腰三角形;
(2)求證:△ABF≌△DCE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣2經(jīng)過點A(4,0),B(1,0).
(1)求出拋物線的解析式;
(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;
(3)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標(biāo);若不存在,請說明理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠EFG的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC⊥BC,AC=BC=4,以BC為直徑作半圓,圓心為O.以點C為圓心,BC為半徑作弧AB,過點O作AC的平行線交兩弧于點D、E,則陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的頂點A點,D點分別在x軸、y軸上,對角線BD∥x軸,反比例函數(shù)的圖象經(jīng)過矩形對角線的交點E,若點A(2,0),D(0,4),則k的值為( )
A.16B.20C.32D.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線過B(﹣2,6),C(2,2)兩點.
(1)試求拋物線的解析式;
(2)記拋物線頂點為D,求△BCD的面積;
(3)若直線向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,求b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com