【題目】如圖,AB為⊙O的直徑,AE為⊙O的切線,若tanABE= ,AE=3,求BD的長.

【答案】BD=

【解析】

AB為⊙O的直徑,得到∠ADB=90°,根據(jù)鄰補角的定義得到∠ADE=90°,根據(jù)切線的性質得到∠EAB=90°,推出EAD∽△EBA,根據(jù)相似三角形的性質得到,得到AE2=EDEB,根據(jù)三角函數(shù)的定義得到AB=6,由勾股定理得到BE=,即可得到結論.

AB為⊙O的直徑, ∴∠ADB=90°,∴∠ADE=90°,

AE為⊙O的切線,

∴∠EAB=90°,

∵∠E=E,

∴△EAD∽△EBA,

,

AE2=EDEB,

RtAEB中,AE=3,tanABE=,

AB=6,

BE=

32=ED3

ED=,

BD=BE﹣ED=3=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中∠A=60°,BMAC于點M,CNAB于點N,PBC邊的中點,連接PM,PN,則下列結論:①PM=PN;;③△PMN為等邊三角形;④當∠ABC=45°時,BN=PC.其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校20名數(shù)學教師的年齡(單位:歲)情況如下:29,42,58,37,53,52,49,24,37,46,42,55,40,38,50,26,54,26,44,52.

(1)填寫下面的頻率分布表:

分組

頻數(shù)

頻率

19.5~29.5

29.5~39.5

39.5~49.5

49.5~59.5

合計

(2)畫出數(shù)據(jù)的頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】幾何體的三視圖相互關聯(lián).已知直三棱柱的三視圖如圖,在△PMN中,∠MPN=90°,PN=4,sin∠PMN=

(1)求BCFG的長;

(2)若主視圖與左視圖兩矩形相似,求AB的長;

(3)在(2)的情況下,求直三棱柱的表面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,折疊矩形ABCD,使點B落在對角線AC上的點F處,若BC8,AB6,則線段CE的長度是( 。

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,ADCD于點D.EAB延長線上一點,CE交⊙O于點F連結OC,AC.

(1)求證AC平分∠DAO

(2)若∠DAO=105°,E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某景區(qū)商店以2元的批發(fā)價進了一批紀念品.經調查發(fā)現(xiàn),每個定價3元,每天可以能賣出500件,而且定價每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀念品售價不能超過批發(fā)價的2.5倍.

1)當每個紀念品定價為3.5元時,商店每天能賣出________件;

2)如果商店要實現(xiàn)每天800元的銷售利潤,那該如何定價?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個求助沒有用(使用求助可以讓主持人去掉其中一題的一個錯誤選項).

(1)如果小明第一題不使用求助,那么小明答對第一道題的概率是  

(2)如果小明將求助留在第二題使用,請用樹狀圖或者列表來分析小明順利通關的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明解方程=3出現(xiàn)了錯誤,解答過程如下:

方程兩邊都乘以(x-2),得1-(1-x)=3(第一步)

去括號,得1-1+x=3(第二步)

移項,合并同類項,得x=3(第三步)

檢驗,當x=3x-2≠0(第四步)

所以x=3是原方程的解.(第五步)

(1)小明解答過程是從第____步開始出錯的,原方程化為第一步的根據(jù)是_____

(2)請寫出此題正確的解答過程.

查看答案和解析>>

同步練習冊答案