【題目】如圖,∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關(guān)系,并證明你的結(jié)論.
解:∠C與∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(鄰補(bǔ)角定義)
∴∠2= . ( . ),
∴AB∥EF( . )
∴∠3= . ( . )
又∠B=∠3(已知)
∴∠B= . (等量代換)
∴DE∥BC( . )
∴∠C=∠AED( . ).

【答案】∠DFE;同角的補(bǔ)角相等;內(nèi)錯(cuò)角相等,兩直線平行;∠ADE;兩直線平行,內(nèi)錯(cuò)角相等;∠ADE;同位角相等,兩直線平行;兩直線平行,同位角相等
【解析】解:∠C與∠AED相等,理由如下: ∵∠1+∠2=180°(已知),∠1+∠DFE=180°(鄰補(bǔ)角定義),
∴∠2=∠DFE(同角的補(bǔ)角相等),
∴AB∥EF(內(nèi)錯(cuò)角相等,兩直線平行),
∴∠3=∠ADE(兩直線平行,內(nèi)錯(cuò)角相等),
又∠B=∠3(已知),
∴∠B=∠ADE(等量代換),
∴DE∥BC(同位角相等,兩直線平行),
∴∠C=∠AED(兩直線平行,同位角相等).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解對(duì)頂角和鄰補(bǔ)角的相關(guān)知識(shí),掌握兩直線相交形成的四個(gè)角中,每一個(gè)角的鄰補(bǔ)角有兩個(gè),而對(duì)頂角只有一個(gè),以及對(duì)平行線的判定與性質(zhì)的理解,了解由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等腰三角形的一個(gè)外角是120°,則它是( )

A. 等腰直角三角形; B. 一般的等腰三角形; C. 等邊三角形; D. 等腰鈍角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的三邊a,b,c中,a=b-1,c=b+1,又已知關(guān)于x的方程4x2-20x+b+12=0的根恰為b的值,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四個(gè)互不相等的整數(shù)a,b,c,d滿足abcd=77,則a+b+c+d=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,觀察圖形回答下面的問(wèn)題:

(1)此圖形的名稱(chēng)為________

(2)請(qǐng)你與同伴一起做一個(gè)這樣的物體,并把它沿AS剪開(kāi),鋪在桌面上,則它的側(cè)面展開(kāi)圖是一個(gè)________

(3)如果點(diǎn)C是SA的中點(diǎn),在A處有一只蝸牛,在C處恰好有蝸牛想吃的食品,但它又不能直接沿AC爬到C處,只能沿此立體圖形的表面爬行,你能在側(cè)面展開(kāi)圖中畫(huà)出蝸牛爬行的最短路線嗎?

(4)SA的長(zhǎng)為10,側(cè)面展開(kāi)圖的圓心角為90°,請(qǐng)你求出蝸牛爬行的最短路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在RtABC,ABC=90°C=60°,現(xiàn)將一個(gè)足夠大的直角三角板的頂點(diǎn)P放在斜邊AC上.

(1)設(shè)三角板的兩直角邊分別交邊AB、BC于點(diǎn)M、N.

當(dāng)點(diǎn)P是AC的中點(diǎn)時(shí),分別作PEAB于點(diǎn)E,PFBC于點(diǎn)F,得到圖1,寫(xiě)出圖中的一對(duì)全等三角形;

的條件下,寫(xiě)出與PEM相似的三角形,并直接寫(xiě)出PN與PM的數(shù)量關(guān)系.

(2)移動(dòng)點(diǎn)P,使AP=2CP,將三角板繞點(diǎn)P旋轉(zhuǎn),設(shè)旋轉(zhuǎn)過(guò)程中三角板的兩直角邊分別交邊AB、BC于點(diǎn)M、N(PM不與邊AB垂直,PN不與邊BC垂直);或者三角板的兩直角邊分別交邊AB、BC的延長(zhǎng)線與點(diǎn)M、N.

請(qǐng)?jiān)趥溆脠D中畫(huà)出圖形,判斷PM與PN的數(shù)量關(guān)系,并選擇其中一種圖形證明你的結(jié)論;

的條件下,當(dāng)PCN是等腰三角形時(shí),若BC=3cm,則線段BN的長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某文具店進(jìn)行促銷(xiāo)活動(dòng),決定將單價(jià)為a元的筆記本降價(jià)10%銷(xiāo)售,降價(jià)后的銷(xiāo)售價(jià)為( )

A. 10%a B. a-10% C. (1-10%)a D. (1+10%)a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若代數(shù)式﹣2a3bm與3an+1b4是同類(lèi)項(xiàng),則mn=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四邊形中,是中心對(duì)稱(chēng)但不是軸對(duì)稱(chēng)的圖形是(

A.矩形B.等腰梯形C.正方形D.平行四邊形

查看答案和解析>>

同步練習(xí)冊(cè)答案