精英家教網 > 初中數學 > 題目詳情
已知:如圖,⊙O1與坐標軸交于A(1,0)、B(5,0)兩點,點O1的坐標為(3,
3
),則⊙O1的半徑長是
7
7
分析:由垂徑定理知AB⊥O1C,AC=
1
2
AB.所以在直角三角形AO1C中,根據勾股定理來求AO1的長度,即⊙O1的半徑長.
解答:解:∵A(1,0)、B(5,0),
∴AB=4.
又∵點O1的坐標為(3,
3
),
∴C(3,0),O1C=
3
,
∴O1C⊥AB,
∴AC=
1
2
AB=2.
∴在Rt△O1AC中,由勾股定理知,O1A=
AC2+O1C2
=
22+(
3
)2
=
7
,即即⊙O1的半徑為
7

故答案是:
7
點評:本題考查了勾股定理、垂徑定理等知識點.此題涉及圓中求半徑的問題,此類在圓中涉及弦長、半徑、圓心角的計算的問題,常把半弦長,半圓心角,圓心到弦距離轉換到同一直角三角形中,然后通過直角三角形予以求解,常見輔助線是過圓心作弦的垂線.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知;如圖,⊙O1與⊙O2內切于點A,⊙O2的直徑AC交⊙O1于點B,⊙O2的弦FC切⊙精英家教網O1于點D,AD的延長線交⊙O2于點E,連接AF、EF、BD.
(1)求證:AC•AF=AD•AE;
(2)若O1O2=9,cos∠BAD=
23
,求DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,⊙O1與⊙O2外切于C點,AB一條外公切線,A、B分別為切點,連接AC、BC.設⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=
2
,則
R
r
的值為( 。
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:初中數學 來源: 題型:

(1998•南京)已知,如圖,⊙O1與⊙O2相交,點P是其中一個交點,點A在⊙O2上,AP的延長線交⊙O1于點B,AO2的延長線交⊙O1于點C、D,交⊙O2于點E,連接PC、PE、PD,且
PC
PD
=
CE
DE
,過A作⊙O1的切線AQ,切點為Q.求證:
(1)∠CPE=∠DPE;
(2)AQ2-AP2=PC•PD.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,⊙O1與⊙O2外切于A點,直線l與⊙O1、⊙O2分別切于B,C點,若⊙O1的半徑r1=2cm,⊙O2的半徑r2=3cm.求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,⊙O1與⊙O2相交于A、B,若兩圓半徑分別為12和5,O1O2=13,則AB=
120
13
120
13

查看答案和解析>>

同步練習冊答案