【題目】某超市擬于中秋節(jié)前天里銷售某品牌月餅,其進(jìn)價為/.設(shè)第天的銷售價格為(元/),銷售量為.該超市根據(jù)以往的銷售經(jīng)驗得出以下的銷售規(guī)律:①當(dāng)時,;當(dāng)時,滿足一次函數(shù)關(guān)系,且當(dāng)時,;時,.②的關(guān)系為

1)當(dāng)時,的關(guān)系式為   ;

2為多少時,當(dāng)天的銷售利潤(元)最大?最大利潤為多少?

3)若超市希望第天到第天的日銷售利潤(元)隨的增大而增大,則需要在當(dāng)天銷售價格的基礎(chǔ)上漲/,求的最小值.

【答案】1;(2時,當(dāng)天的銷售利潤(元)最大,最大利潤為元;(33

【解析】

1)依據(jù)題意利用待定系數(shù)法,易得出當(dāng)時,的關(guān)系式為:,

2)根據(jù)銷售利潤=銷售量×(售價﹣進(jìn)價),列出每天的銷售利潤(元)與銷售價(元/箱)之間的函數(shù)關(guān)系式,再依據(jù)函數(shù)的增減性求得最大利潤.

3)要使第天到第天的日銷售利潤(元)隨的增大而增大,則對稱軸,求得即可

1)依題意,當(dāng)時,時,,

當(dāng)時,設(shè),

則有,解得

的關(guān)系式為:

2)依題意,

整理得,

當(dāng)時,

增大而增大

時,取最大值

當(dāng)時,

時,取得最大值,此時

綜上所述,時,當(dāng)天的銷售利潤(元)最大,最大利潤為

3)依題意,

天到第天的日銷售利潤(元)隨的增大而增大

對稱軸,得

的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋德物線y+1有下性質(zhì):該拋物線上任意一點到定點F0,2)的距離與到軸的距離始終相等,如圖,點M的坐標(biāo)為(,3),P是拋物線y+1上一個動點,則△PMF周長的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,CBABD為圓上一點,且ADOC,連接CD,AC,BD,ACBD交于點M

1)求證:CD為⊙O的切線;

2)若CDAD,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD的周長是48cm, AEBC,垂足為E,AFCD,垂足為F,∠EAF2C

1)求∠C的度數(shù);

2)已知DF的長是關(guān)于x的方程x25xa0的一個根,求該方程的另一個根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB兩個黑布袋,A布袋中有四個除標(biāo)號外完全相同的小球,小球上分別標(biāo)有數(shù)字0,1,2,3,B布袋中有三個除標(biāo)號外完全相同的小球,小球上分別標(biāo)有數(shù)字0,1,2.小明先從A布袋中隨機取出一個小球,用m表示取出的球上標(biāo)有的數(shù)字,再從B布袋中隨機取出一個小球,用n表示取出的球上標(biāo)有的數(shù)字.

1)若用(mn)表示小明取球時mn 的對應(yīng)值,請畫出樹狀圖并寫出(m,n)的所有取值;

2)求關(guān)于x的一元二次方程有實數(shù)根的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C,點A的坐標(biāo)為(2,0),點C的坐標(biāo)為(04),它的對稱軸是直線x=-1.

(1)求這個二次函數(shù)的解析式;

(2)在第二象限內(nèi)拋物線上是否存在一點P,使的面積最大?若存在,求出的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,連接AC,將繞點A逆時針旋轉(zhuǎn)α,連接CF,OCF的中點,連接OE,OD

1)如圖1,當(dāng)時,請直接寫出OEOD的關(guān)系(不用證明).

2)如圖2,當(dāng)時,(1)中的結(jié)論是否成立?請說明理由.

3)當(dāng)時,若,請直接寫出點O經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝超市購進(jìn)單價為30元的童裝若干件,物價部門規(guī)定其銷售單價不低于每件30元,不高于每件60元.銷售一段時間后發(fā)現(xiàn):當(dāng)銷售單價為60元時,平均每月銷售量為80件,而當(dāng)銷售單價每降低10元時,平均每月能多售出20件.同時,在銷售過程中,每月還要支付其他費用450元.設(shè)銷售單價為x元,平均月銷售量為y件.

1)求出yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

2)當(dāng)銷售單價為多少元時,銷售這種童裝每月可獲利1800元?

3)當(dāng)銷售單價為多少元時,銷售這種童裝每月獲得利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案