【題目】ABCA90°ABAC

1)如圖1,ABC的角平分線BD,CE交于點(diǎn)Q,請(qǐng)判斷“”是否正確________(填“是”或“否”);

2)點(diǎn)PABC所在平面內(nèi)的一點(diǎn),連接PA,PB,PB PA

①如圖2點(diǎn)P在△ABC內(nèi),ABP30°PAB的大小;

②如圖3,點(diǎn)P在△ABC連接PC,設(shè)APCαBPCβ,用等式表示αβ之間的數(shù)量關(guān)系,并證明你的結(jié)論

【答案】1)否;(245°;

【解析】試題分析

1)如圖4,把△AQC順時(shí)針旋轉(zhuǎn)90°得到△AQ1B,連接QQ1,則由題意易得QQ1=AQ,由已知條件可證∠BQ1QQ1BQ,從而可得BQQQ1=AQ;

2如圖5,過(guò)點(diǎn)PDAB于點(diǎn),結(jié)合∠ABP=30°可得PD=PB,結(jié)合PB=PA可得PD=PA,由此即可得到sinPAB=,結(jié)合∠PAB是銳角即可得到∠PAB=45°;

如圖6,把△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到ACD,連接DC,DP則由旋轉(zhuǎn)的性質(zhì)可得 1=2,PB=CD,DAP=90°AD=AP,由此可得PD=PA,結(jié)合PB=PA可證得PD=DC,從而得到∠PCD=CPD=45°+α,由此可得3=180°-2CPD=90°-2α,結(jié)合1=2= ,可得∠1+3=90°- =ADP=45°,變形即可得到 .

試題解析

1)如圖4,把△AQC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△AQ1B,連接QQ1,

由旋轉(zhuǎn)的性質(zhì)可得:AQ1=AQ,∠Q1AQ=90°,

QQ1=AQ

∵BQ、CQ分別平分∠ABC、∠ACB,

∴AQ平分∠BAC,

∴∠AQ1C=∠AQC=112.5°

∴∠BQ1Q=112.5°-45°=67.5°,

∵∠Q1BQ=45°,

∴∠Q1BQBQ1Q,

BQQ1Q=AQ.

故答案為:“否”

2如圖5,PD⊥ABD,則∠PDB=∠PDA=90°,

ABP=30°

.

,

.

.

又∵∠PAB是銳角,

∴∠PAB=45°.

,理由如下:

如圖6,把△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ACD,連接DC,DP,則由旋轉(zhuǎn)的性質(zhì)可得∠1=∠2,PB=CD,DAP=90°,AD=AP,

,∠ADP=APD=45°.

又∵

PD=PB=CD.

DCP=DPC.

APCα,∠BPCβ,

, .

.

.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線 a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

①4acb2;

方程 的兩個(gè)根是x1=1x2=3;

③3a+c0

當(dāng)y0時(shí),x的取值范圍是﹣1≤x3

當(dāng)x0時(shí),yx增大而增大

其中結(jié)論正確的個(gè)數(shù)是( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)已知ABC和ADE是等腰直角三角形,ACB=ADE=90°,點(diǎn)F為BE中點(diǎn),連結(jié)DF、CF.

(1)如圖1, 當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上,請(qǐng)直接寫出此時(shí)線段DF、CF的數(shù)量關(guān)系位置關(guān)系(不證明);

(2)如圖2,在(1)的條件下ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°時(shí),請(qǐng)你判斷此時(shí)(1)中的結(jié)論是否仍然成立,并證明你的判斷

(3)如圖3,在(1)的條件下ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°時(shí),若AD=1,AC=,求此時(shí)線段CF的長(zhǎng)(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是“作一個(gè)30°角”的尺規(guī)作圖過(guò)程.

已知:平面內(nèi)一點(diǎn)A.

求作:∠A,使得∠A30°.

作法:如圖,

(1)作射線AB;

(2)在射線AB上取一點(diǎn)O,以O(shè)為圓心,OA為半徑作圓,與射線AB相交于點(diǎn)C;

(3)以C為圓心,OC為半徑作弧,與⊙O交于點(diǎn)D,作射線AD.

∠DAB即為所求的角.

請(qǐng)回答:該尺規(guī)作圖的依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中, , °,點(diǎn)D是線段BC上的動(dòng)點(diǎn),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)50°,連接.已知AB2cm設(shè)BDx cm,By cm

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究,下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整.(說(shuō)明:解答中所填數(shù)值均保留一位小數(shù))

1通過(guò)取點(diǎn)、畫圖、測(cè)量,得到了的幾組值,如下表:

0.5

0.7

1.0

1.5

2.0

2.3

1.7

1.3

1.1

0.7

0.9

1.1

2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象.

3)結(jié)合畫出的函數(shù)圖象,解決問(wèn)題:

線段的長(zhǎng)度的最小值約為__________ ;

,則的長(zhǎng)度x的取值范圍是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)出售一批進(jìn)價(jià)為2元的賀卡,在市場(chǎng)營(yíng)銷中發(fā)現(xiàn)此商品的日銷售單價(jià)x(元)與日銷售量y(個(gè))之間有如下關(guān)系:

日銷售單價(jià)x(元)

3

4

5

6

日銷售量y(個(gè))

20

15

12

10

1)猜測(cè)并確定yx之間的函數(shù)關(guān)系式,并畫出圖象;

2)設(shè)經(jīng)營(yíng)此賀卡的銷售利潤(rùn)為W元,求出Wx之間的函數(shù)關(guān)系式,

3)若物價(jià)局規(guī)定此賀卡的售價(jià)最高不能超過(guò)10元/個(gè),請(qǐng)你求出當(dāng)日銷售單價(jià)x定為多少時(shí),才能獲得最大日銷售利潤(rùn)?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】古代阿拉伯?dāng)?shù)學(xué)家泰比特·伊本·奎拉對(duì)勾股定理進(jìn)行了推廣研究如圖(圖1為銳角,2為直角3為鈍角)

ABC的邊BC上取, 兩點(diǎn),使,, , ,進(jìn)而可得 ;(用表示

AB=4,AC=3,BC=6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P(t,0)x軸上的動(dòng)點(diǎn),Q(0,2t)y軸上的動(dòng)點(diǎn).若線段PQ與函數(shù)y=﹣|x|2+2|x|+3的圖象只有一個(gè)公共點(diǎn),則t的取值是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2-5x+c的圖象如圖所示.

(1)試求該二次函數(shù)的解析式和它的圖象的頂點(diǎn)坐標(biāo);

(2)觀察圖象回答,x何值時(shí)y的值大于0?

查看答案和解析>>

同步練習(xí)冊(cè)答案