作業(yè)寶(1)一輛寬2m的貨車要通過跨度為8m、拱高為4m的單行拋物線隧道(從正中通過),為了保證安全,車頂離隧道頂部至少要0.5m的距離,貨車的限高為多少?
(2)若將(1)中的單行道改為雙行道,即貨車必須從隧道中線的右側(cè)通過,貨車的限高應(yīng)是多少?

解:(1)∵隧道跨度為8米,隧道的頂端坐標(biāo)為(O,4),
∴A、B關(guān)于y軸對(duì)稱,
∴OA=OB=AB=×8=4,
∴點(diǎn)B的坐標(biāo)為(4,0),
設(shè)拋物線頂點(diǎn)式形式y(tǒng)=ax2+4,
把點(diǎn)B坐標(biāo)代入得,16a+4=0,
解得a=-,
所以,拋物線解析式為y=-x2+4(-4≤x≤4);

(2)∵車的寬度為2米,車從正中通過,
∴x=1時(shí),y=-×12+4=,
∴貨車安全行駛裝貨的最大高度為-=(米).
當(dāng)x=2時(shí),y=3,
故貨車限高為3-0.5=2.5(米).
分析:(1)根據(jù)跨度求出點(diǎn)B的坐標(biāo),然后設(shè)拋物線頂點(diǎn)式形式y(tǒng)=ax2+4,然后把點(diǎn)B的坐標(biāo)代入求出a的值,即可得解;
(2)根據(jù)車的寬度為2,求出x=1時(shí)的函數(shù)值,再根據(jù)限高求出可裝貨物的最大高度即可.
點(diǎn)評(píng):本題考查了二次函數(shù)的應(yīng)用,主要利用了二次函數(shù)的圖象的對(duì)稱性,待定系數(shù)法求二次函數(shù)解析式,以及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,比較簡單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

一座拱橋的輪廓是拋物線型(如圖1),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.
(1)將拋物線放在所給的直角坐標(biāo)系中(如圖2),求拋物線的解析式;
(2)求支柱EF的長度;
(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計(jì))?請(qǐng)說明你的理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一座拱橋的輪廓是拋物線型(如圖1所示),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.
(1)將拋物線放在所給的直角坐標(biāo)系中(如圖2所示),其表達(dá)式是y=ax2+c的形式.請(qǐng)根據(jù)所給的數(shù)據(jù)求出a,c的值.
(2)求支柱MN的長度.
(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計(jì))?請(qǐng)說說你的理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)一輛寬2m的貨車要通過跨度為8m、拱高為4m的單行拋物線隧道(從正中通過),為了保證安全,車頂離隧道頂部至少要0.5m的距離,貨車的限高為多少?
(2)若將(1)中的單行道改為雙行道,即貨車必須從隧道中線的右側(cè)通過,貨車的限高應(yīng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(20):2.6 何時(shí)獲得最大利潤(解析版) 題型:解答題

一座拱橋的輪廓是拋物線型(如圖1),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.
(1)將拋物線放在所給的直角坐標(biāo)系中(如圖2),求拋物線的解析式;
(2)求支柱EF的長度;
(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計(jì))?請(qǐng)說明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案