6.已知5+2$\sqrt{6}$的整數(shù)部分和小數(shù)部分分別為a和b,求b(a-1)的值.

分析 根據(jù)$\sqrt{6}$的取值范圍,能夠得出a和b的值,將a、b代入b(a-1)即是所求.

解答 解:∵2<$\sqrt{6}$<2.5,
∴5+2$\sqrt{6}$的整數(shù)部分a=9,小數(shù)部分b=5+2$\sqrt{6}$-9=2$\sqrt{6}$-4,
∴b(a-1)=(2$\sqrt{6}$-4)(9-1)=16$\sqrt{6}$-32.
答:b(a-1)的值為16$\sqrt{6}$-32.

點(diǎn)評(píng) 本題考查了估算無(wú)理數(shù)的大小,解題的關(guān)鍵是找到2<$\sqrt{6}$<2.5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖是由邊長(zhǎng)為1cm的若干個(gè)正方形疊加行成的圖形,其中第一個(gè)圖形由1個(gè)正方形組成,周長(zhǎng)為4cm,第二個(gè)圖形由4個(gè)正方形組成,周長(zhǎng)為10cm.第三個(gè)圖形由9個(gè)正方形組成,周長(zhǎng)為16cm,依次規(guī)律…
(1)第四個(gè)圖形有16個(gè)正方形組成,周長(zhǎng)為22cm.
(2)第n個(gè)圖形有n2個(gè)正方形組成,周長(zhǎng)為6n-2cm.
(3)若某圖形的周長(zhǎng)為58cm,計(jì)算該圖形由多少個(gè)正方形疊加形成.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.拋物線y=ax2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如表:
x-4-3-2-101
y589850
由表可知,拋物線與x軸的一個(gè)交點(diǎn)是(1,0),則另一個(gè)交點(diǎn)的坐標(biāo)為( 。
A.(0,5)B.(-2,9)C.(-5,0)D.(2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若a<b,化簡(jiǎn)$\sqrt{{a}^{2}^{5}}$的結(jié)果不可能是( 。
A.ab2$\sqrt$B.-ab2$\sqrt{-b}$C.-ab2$\sqrt$D.-ab$\sqrt{-ab}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,∠C=90°.
(1)若BC=2,AC=4,則AB=2$\sqrt{5}$;
(2)若BC=$\sqrt{7}$,AB=4,則AC=3;
(3)石BC:AC=3:4,則AB=25,則BC=15,AC=20.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,直線l1的解析表達(dá)式為y=$\frac{1}{2}$x+1,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過(guò)定點(diǎn)A,B,直線l1與l2交于點(diǎn)C.
(1)求直線l2的函數(shù)關(guān)系式;
(2)求△ADC的面積;
(3)若平行于y軸的直線x=t分別交直線l1、l2于點(diǎn)E、F,平行于y軸的直線x=t+2分別交直線l1、l2于點(diǎn)G、H,且以點(diǎn)E、F、G、H為頂點(diǎn)的四邊形是平行四邊形,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,BD平分∠EBC,AD=DC,求證:∠DAB+∠C=180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若不等式組$\left\{\begin{array}{l}{x<1}\\{x>-1}\\{x>m}\end{array}\right.$無(wú)解,則m的取值范圍是(  )
A.m≤-1B.m≥1C.-1<m<1D.m≤-1或m≥1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖1,拋物線的頂點(diǎn)D在y軸上,與x軸交于A,B兩點(diǎn),我們把拋物線上A,B兩點(diǎn)之間的部分與$\widehat{AB}$所圍成的封閉圖形稱為“鍋線”,頂點(diǎn)D稱為“鍋底”,點(diǎn)D到線段AB的距離稱為“鍋深”上面的$\widehat{AB}$稱為“鍋蓋”,$\widehat{AB}$的中點(diǎn)C到線段AB的距離稱為“鍋蓋高”,若△ADB為等腰三角形,則此“鍋線”稱為“標(biāo)準(zhǔn)鍋線”.
(1)若圖1中的“鍋線”為“標(biāo)準(zhǔn)鍋線”,“鍋蓋高”為1dm,“鍋深”為3dm,求拋物線的解析式及$\widehat{AB}$所在圓的圓心坐標(biāo);
(2)在(1)的情況下,如圖2,若點(diǎn)E(-2,n)是“標(biāo)準(zhǔn)鍋線”中拋物線上的一點(diǎn),且直線BE交y軸于點(diǎn)G,判斷△BOC與△BOG的關(guān)系,并證明你的結(jié)論;
(3)在(2)的情況下,連接OE,在x軸上是否存在點(diǎn)P,使以點(diǎn)P,B,C為頂點(diǎn)的△PBC與△BOE相似?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案