【題目】如圖,在△ABC中,AB=AC,AD是角平分線(xiàn),BE平分∠ABC交AD于點(diǎn)E,點(diǎn)O在AB上,以O(shè)B為半徑的⊙O經(jīng)過(guò)點(diǎn)E,交AB于點(diǎn)F
(1)求證:AD是⊙O的切線(xiàn);
(2)若AC=4,∠C=30°,求 的長(zhǎng).
【答案】
(1)證明:
如圖,連接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC,
∴∠OBE=∠EBD,
∴∠OEB=∠EBD,
∴OE∥BD,
∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠OEA=∠BDA=90°,
∴AD是⊙O的切線(xiàn)
(2)解:∵AB=AC=4,∠C=∠B=30°,
∴BD=2 ,
設(shè)圓的半徑為r,則BO=OE=r,AO=AC﹣OB=4﹣r,
∵OE∥BD,
∴ = ,即 = ,解得r=8 ﹣12,
∴ = =
【解析】(1)連接OE,利用角平分線(xiàn)的定義和圓的性質(zhì)可得∠OBE=∠OEB=∠EBD,可證明OE∥BD,結(jié)合等腰三角形的性質(zhì)可得AD⊥BD,可證得OE⊥AD,可證得AD為切線(xiàn);(2)利用(1)的結(jié)論,結(jié)合條件可求得∠AOE=30°,由(1)可知OE∥BD,設(shè)半徑為r,則OB=OE=r,AO=4﹣r,在Rt△ABD中,由勾股定理可求得BD,由平行線(xiàn)分線(xiàn)段成比例可得到關(guān)于r的方程,可求得圓的半徑,利用弧長(zhǎng)公式可求得 .
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等腰三角形的性質(zhì)(等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角)),還要掌握含30度角的直角三角形(在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“一帶一路”是對(duì)古絲綢之路的傳承和提升,讓中國(guó)和世界的聯(lián)系更緊密,電氣設(shè)備是“一帶一路”沿線(xiàn)國(guó)家受青睞的商品。某企業(yè)計(jì)劃生產(chǎn)甲、乙兩種電氣設(shè)備出口,甲種設(shè)備售價(jià)50千元/件,乙種設(shè)備售價(jià)30千元/件,生產(chǎn)這兩種設(shè)備需要A、B兩種原料,生產(chǎn)甲設(shè)備需要A種原料4噸/件,B種原料2噸/件,生產(chǎn)乙設(shè)備需要A種原料3噸/件,B種原料1噸/件,已知A種原料有120噸,B種原料有50噸.
(1)如何安排生產(chǎn),才能恰好使A、B兩種原料全部用完?此時(shí)總產(chǎn)值是多少千元?
(2)若使甲種設(shè)備售價(jià)上漲10%,而乙種設(shè)備售價(jià)下降10%,并且要求甲種設(shè)備比乙種設(shè)備多生產(chǎn)25件,問(wèn)如何安排甲、乙兩種設(shè)備的生產(chǎn),使銷(xiāo)售總產(chǎn)值能達(dá)到1375千元,此時(shí)A、B兩種原料還剩下多少?lài)崳?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值:
(1)(9x3y-12xy3+3xy2)÷(-3xy)-(2y+x)(2y-x),其中x=1,y=-2;
(2)(m-n)(m+n)+(m+n)2-2m2,其中m、n滿(mǎn)足方程組
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊直角三角板DEF放置在△ABC上,三角板DEF的兩條直角邊DE、DF恰好分別經(jīng)過(guò)點(diǎn)B、C.△ABC中,∠A=50°,求∠DBA+∠DCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB∥CD,
求:(1)在圖(1)中∠B+∠D=?(2)在圖(2)中∠B+∠E1+∠D=?(3)在圖(3)中∠B+∠E1+∠E2+…+∠En﹣1+∠En+∠D=?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( 。
A.(x+y)2=x2+y2B.(﹣x+y)2=x2+2xy+y2
C.(x﹣2y)(x+2y)=x2﹣2y2D.(x﹣1)(﹣x﹣1)=1﹣x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3,已知A(1,5) 、A1(2,5) 、A2(4,5) 、A3(8,5) 、B(2,0) 、B1(4,0) 、B2(8,0) 、B3(16,0):若按此規(guī)律,將△OAB進(jìn)行n次變換,得到△OAnBn。推測(cè)An的坐標(biāo)是___________,Bn的坐標(biāo)是___________。( )
A. (2n,5)(2n+1,0) B. (2n-1,5)(2n+1,0) C. (2n,5)(2n,0) D. (2n+1,5)(2n+1,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,EF//AD,=.說(shuō)明:∠DGA+∠BAC=180°. 填空并寫(xiě)出推理的依據(jù).
解:∵EF//AD,(已知)
∴=__ __ (_____________________________)
又∵=, (已知)
∴=__ _, (等量替代)
∴AB//___ ___, (_______________ _____________)
∴∠DGA+∠BAC=180° (_______________ _________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值:
(1)(1+a)(1-a)+(a-2)2,其中a=;
(2)(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-3.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com