(2003•廣西)如圖所示,在△ABC中,AB=AC=5,D是BC上的點(diǎn),DE∥AB交AC于點(diǎn)E,DF∥AC交AB于點(diǎn)F,那么四邊形AFDE的周長(zhǎng)是( )

A.5
B.10
C.15
D.20
【答案】分析:由于DE∥AB,DF∥AC,則可以推出四邊形AFDE是平行四邊形,然后利用平行四邊形的性質(zhì)可以證明?AFDE的周長(zhǎng)等于AB+AC.
解答:解:∵DE∥AB,DF∥AC,
則四邊形AFDE是平行四邊形,
∠B=∠EDC,∠FDB=∠C
∵AB=AC,∴∠B=∠C,
∴∠B=∠FDB,∠C=∠EDF
∴BF=FD,DE=EC,
所以:?AFDE的周長(zhǎng)等于AB+AC=10.
故選B.
點(diǎn)評(píng):根據(jù)平行四邊形的性質(zhì),找出對(duì)應(yīng)相等的邊,利用等腰三角形的性質(zhì)把四邊形周長(zhǎng)轉(zhuǎn)化為已知的長(zhǎng)度去解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2003•廣西)如圖,以A(0,)為圓心的圓與x軸相切于坐標(biāo)原點(diǎn)O,與y軸相交于點(diǎn)B,弦BD的延長(zhǎng)線交x軸的負(fù)半軸于點(diǎn)E,且∠BEO=60°,AD的延長(zhǎng)線交x軸于點(diǎn)C.
(1)分別求點(diǎn)E、C的坐標(biāo);
(2)求經(jīng)過A、C兩點(diǎn),且以過E而平行于y軸的直線為對(duì)稱軸的拋物線的函數(shù)解析式;
(3)設(shè)拋物線的對(duì)稱軸與AC的交點(diǎn)為M,試判斷以M點(diǎn)為圓心,ME為半徑的圓與⊙A的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年廣西中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•廣西)如圖,以A(0,)為圓心的圓與x軸相切于坐標(biāo)原點(diǎn)O,與y軸相交于點(diǎn)B,弦BD的延長(zhǎng)線交x軸的負(fù)半軸于點(diǎn)E,且∠BEO=60°,AD的延長(zhǎng)線交x軸于點(diǎn)C.
(1)分別求點(diǎn)E、C的坐標(biāo);
(2)求經(jīng)過A、C兩點(diǎn),且以過E而平行于y軸的直線為對(duì)稱軸的拋物線的函數(shù)解析式;
(3)設(shè)拋物線的對(duì)稱軸與AC的交點(diǎn)為M,試判斷以M點(diǎn)為圓心,ME為半徑的圓與⊙A的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:填空題

(2003•廣西)如圖,四邊形OABC中,OA=OB=OC,∠2是∠1的4倍,那么∠4是∠3的    倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(04)(解析版) 題型:解答題

(2003•廣西)如圖,BD、CE是△ABC的中線,G、H分別是BE、CD的中點(diǎn),BC=8,求GH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年廣西中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2003•廣西)如圖所示,在△ABC中,AB=AC=5,D是BC上的點(diǎn),DE∥AB交AC于點(diǎn)E,DF∥AC交AB于點(diǎn)F,那么四邊形AFDE的周長(zhǎng)是( )

A.5
B.10
C.15
D.20

查看答案和解析>>

同步練習(xí)冊(cè)答案