【題目】為了了解某學(xué)校八年級學(xué)生每周平均體育鍛煉時間的情況,隨機(jī)抽查了該年級的部分學(xué)生,對其每周鍛煉時間進(jìn)行統(tǒng)計,根據(jù)統(tǒng)計數(shù)據(jù)繪制成圖1和圖2兩個不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,回答下列問題:
(1)本次共抽取了學(xué)生 人,并請將圖1條形統(tǒng)計圖補(bǔ)充完整;
(2)這組數(shù)據(jù)的中位數(shù)是 ,求出這組數(shù)據(jù)的平均數(shù);
(3)若八年級有學(xué)生1800人,請你估計體育鍛煉時間為3小時的學(xué)生有多少人?
【答案】(1)60;(2)中位數(shù)是3小時,平均數(shù)是2.75小時;(3)600.
【解析】
(1)根據(jù)統(tǒng)計圖求出2小時人數(shù)所占百分比,再根據(jù)2小時的人數(shù)可以求得本次共抽取了學(xué)生多少人,閱讀3小時的學(xué)生有多少人,從而可以將條形統(tǒng)計圖補(bǔ)充完整;
(2)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得眾數(shù)和平均數(shù);
(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得課外閱讀時間為3小時的學(xué)生有多少人.
由扇形統(tǒng)計圖知,2小時人數(shù)所占的百分比為100%=25%,
∴本次共抽取的學(xué)生人數(shù)為15÷25%=60(人),
則3小時的人數(shù)為60﹣(10+15+10+5)=20(人),補(bǔ)全條形圖如下:
故答案為:60;
(2)這組數(shù)據(jù)的中位數(shù)是3(小時),平均數(shù)為2.75(小時).
故答案為:中位數(shù)是3小時.平均數(shù)為2.75小時.
(3)估計體育鍛煉時間為3小時的學(xué)生有1800600(人).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點、,其中、滿足,將點、分別向上平移2個單位,再向右平移1個單位至、,連接、.
(1)直接寫出點的坐標(biāo):__________;
(2)連接交于一點,求的值:
(3)如圖2,點從點出發(fā),以每秒1個單位的速度向上平移運動,同時點從點出發(fā),以每秒2個單位的速度向左平移運動,設(shè)射線交軸于.問的值是否為定值?如果是定值,請求出它的值;如果不是定值,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖象(折線OEFPMN)描述了某汽車在行駛過程中速度與時間的函數(shù)關(guān)系,下列說法中錯誤的是( )
A. 第3分時汽車的速度是40千米/時
B. 第12分時汽車的速度是0千米/時
C. 從第3分到第6分,汽車行駛了120千米
D. 從第9分到第12分,汽車的速度從60千米/時減少到0千米/時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點.作正方形DEFG,使點A、C分別在DG和DE上,連接AE、BG.
(1)試猜想線段BG和AE的關(guān)系(位置關(guān)系及數(shù)量關(guān)系),請直接寫出你得到的結(jié)論;
(2)將正方形DEFG繞點D逆時針方向旋轉(zhuǎn)一角度α后(0°<α<90°),如圖(2),通過觀察或測量等方法判斷(1)中的結(jié)論是否仍然成立?如果成立,請予以證明;如果不成立,請說明理由;
(3)若BC=DE=2,正方形DEFG繞點D逆時針方向旋轉(zhuǎn)角度α (0°<α<360°)過程中,當(dāng)BG為最小值時,求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB的邊OB在x軸上,AC⊥x軸于C,D為AC上一點,將△CBD沿BD翻折,使點C落在AB邊上的E點.已知∠AOB=60°,AO=4,點B的坐標(biāo)為(8+2,0),則點D的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)△ABC與△A′B′C′在平面直角坐標(biāo)系中的位置如圖.
(1)分別寫出下列各點的坐標(biāo):A′ ; B′ ;C′ ;
(2)說明△A′B′C′由△ABC經(jīng)過怎樣的平移得到? .
(3)若點P(a,b)是△ABC內(nèi)部一點,則平移后△A′B′C′內(nèi)的對應(yīng)點P′的坐標(biāo)為 ;
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB:y=﹣x+與直線AC:y=+8交于點A,直線AB分別交x軸、y軸于B、E,直線AC分別交x軸、y軸于點C、D.
(1)求點A的坐標(biāo);
(2)在y軸左側(cè)作直線FG∥y軸,分別交直線AB、直線AC于點F、G,當(dāng)FG=3DE時,過點G作直線GH⊥y軸于點H,在直線GH上找一點P,使|PF﹣PO|的值最大,求出P點的坐標(biāo)及|PF﹣PO|的最大值;
(3)將一個45°角的頂點Q放在x軸上,使其角的一邊經(jīng)過A點,另一邊交直線AC于點R,當(dāng)△AQR為等腰直角三角形時,請直接寫出點R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一果農(nóng)帶了若干千克自產(chǎn)的蘋果進(jìn)城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又半價售完剩下的蘋果.售出蘋果千克數(shù)與他手中持有的錢數(shù)(含備用零錢)的關(guān)系如圖所示,結(jié)合圖象回答下列問題:
(1)果農(nóng)自帶的零錢是多少?
(2)降價前他每千克蘋果出售的價格是多少?
(3)降價售完剩余蘋果后,這時他手中的錢(含備用零錢)是1120元,問果農(nóng)一共帶了多少千克蘋果?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù),(k為常數(shù),k≠1).
(1)若點A(1,2)在這個函數(shù)的圖象上,求k的值;
(2)若在這個函數(shù)圖象的每一分支上,y隨x的增大而增大,求k的取值范圍;
(3)若k=13,試判斷點B(3,4),C(2,5)是否在這個函數(shù)的圖象上,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com