年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(山東青島卷)數(shù)學(xué)(解析版) 題型:解答題
問題提出:以n邊形的n個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+n)個點(diǎn)作為頂
點(diǎn),可把原n邊形分割成多少個互不重疊的小三角形?
問題探究:為了解決上面的問題,我們將采取一般問題特殊化的策略,先從簡單和具體的情形入手:
探究一:以△ABC的3個頂點(diǎn)和它內(nèi)部的1個點(diǎn)P,共4個點(diǎn)為頂點(diǎn),可把△ABC分割成多少個互
不重疊的小三角形?如圖①,顯然,此時可把△ABC分割成3個互不重疊的小三角形.
探究二:以△ABC的3個頂點(diǎn)和它內(nèi)部的2個點(diǎn)P、Q,共5個點(diǎn)為頂點(diǎn),可把△ABC分割成多少個
互不重疊的小三角形?
在探究一的基礎(chǔ)上,我們可看作在圖①△ABC的內(nèi)部,再添加1個點(diǎn)Q,那么點(diǎn)Q的位置會有兩種
情況:
一種情況,點(diǎn)Q在圖①分割成的某個小三角形內(nèi)部.不妨設(shè)點(diǎn)Q在△PAC的內(nèi)部,如圖②;
另一種情況,點(diǎn)Q在圖①分割成的小三角形的某條公共邊上.不妨設(shè)點(diǎn)Q在PA上,如圖③.
顯然,不管哪種情況,都可把△ABC分割成5個互不重疊的小三角形.
探究三:以△ABC的三個頂點(diǎn)和它內(nèi)部的3個點(diǎn)P、Q、R,共6個點(diǎn)為頂點(diǎn),可把△ABC分割成 個
互不重疊的小三角形,并在圖④中畫出一種分割示意圖.
探究四:以△ABC的三個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+3)個點(diǎn)為頂點(diǎn),可把△ABC分割成 個
互不重疊的小三角形.
探究拓展:以四邊形的4個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+4)個點(diǎn)為頂點(diǎn),可把四邊形分割成
個互不重疊的小三角形.
問題解決:以n邊形的n個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+n)個點(diǎn)作為頂點(diǎn),可把原n邊形分割成
個互不重疊的小三角形.
實(shí)際應(yīng)用:以八邊形的8個頂點(diǎn)和它內(nèi)部的2012個點(diǎn),共2020個頂點(diǎn),可把八邊形分割成多少個互
不重疊的小三角形?(要求列式計(jì)算)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com