【題目】如圖,已知拋物線y=-x2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,8)、B(8,0)和點(diǎn)E,動(dòng)點(diǎn)C從原點(diǎn)O開(kāi)始沿OA方向以每秒1個(gè)單位長(zhǎng)度移動(dòng),動(dòng)點(diǎn)D從點(diǎn)B開(kāi)始沿BO方向以每秒1個(gè)單位長(zhǎng)度移動(dòng),動(dòng)點(diǎn)C、D同時(shí)出發(fā),當(dāng)動(dòng)點(diǎn)D到達(dá)原點(diǎn)O時(shí),點(diǎn)C、D停止運(yùn)動(dòng).

(1)直接寫(xiě)出拋物線的解析式: ;
(2)求△CED的面積S與D點(diǎn)運(yùn)動(dòng)時(shí)間t的函數(shù)解析式;當(dāng)t為何值時(shí),△CED的面積最大?最大面積是多少?
(3)當(dāng)△CED的面積最大時(shí),在拋物線上是否存在點(diǎn)P(點(diǎn)E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)y=-x2+3x+8
(2)

解:∵點(diǎn)A(0,8)、B(8,0),

∴OA=8,OB=8,

令y=0,得:-x2+3x+8=0,

解得:x18,x2=2,

∵點(diǎn)E在x軸的負(fù)半軸上,

∴點(diǎn)E(-2,0),

∴OE=2,

根據(jù)題意得:當(dāng)D點(diǎn)運(yùn)動(dòng)t秒時(shí),BD=t,OC=t,

∴OD=8﹣t,

∴DE=OE+OD=10﹣t,

∴S=DEOC=(10-t)t=-t2+5t,

即S=-t2+5t=-(t-5)2+,

∴當(dāng)t=5時(shí),S最大=


(3)

由(2)知:當(dāng)t=5時(shí),S最大=,

∴當(dāng)t=5時(shí),OC=5,OD=3,

∴C(0,5),D(3,0),

由勾股定理得:CD=

設(shè)直線CD的解析式為:y=kx+b,

將C(0,5),D(3,0),代入上式得:

k=-,b=5,

∴直線CD的解析式為:y=-x+5,

過(guò)E點(diǎn)作EF∥CD,交拋物線與點(diǎn)P,如圖1,

設(shè)直線EF的解析式為:y=-x+b,

將E(-2,0)代入得:b=-,

∴直線EF的解析式為:y=-x-,

將y=-x-,與y=-x2+3x+8聯(lián)立成方程組得:

,

解得:,,

∴P(,﹣);

過(guò)點(diǎn)E作EG⊥CD,垂足為G,

∵當(dāng)t=5時(shí),SECD==

∴EG=,

過(guò)點(diǎn)D作DN⊥CD,垂足為N,且使DN=,過(guò)點(diǎn)N作NM⊥x軸,垂足為M,如圖2,

可得△EGD∽△DMN,

即:,

解得:DM=

∴OM=,

由勾股定理得:MN==

∴N(,),

過(guò)點(diǎn)N作NH∥CD,與拋物線交與點(diǎn)P,如圖2,

設(shè)直線NH的解析式為:y=-x+b,

將N(,),代入上式得:b=,

∴直線NH的解析式為:y=-x+,

將y=-x+,與y=-x2+3x+8聯(lián)立成方程組得:

解得:,

∴P(8,0)或P(,),

綜上所述:當(dāng)△CED的面積最大時(shí),在拋物線上存在點(diǎn)P(點(diǎn)E除外),使△PCD的面積等于△CED的最大面積,點(diǎn)P的坐標(biāo)為:P(,-)或P(8,0)或P(,).


【解析】(1)將點(diǎn)A(0,8)、B(8,0)代入拋物線y=﹣x2+bx+c即可求出拋物線的解析式為:y=﹣x2+3x+8;
(2)根據(jù)題意得:當(dāng)D點(diǎn)運(yùn)動(dòng)t秒時(shí),BD=t,OC=t,然后由點(diǎn)A(0,8)、B(8,0),可得OA=8,OB=8,從而可得OD=8﹣t,然后令y=0,求出點(diǎn)E的坐標(biāo)為(﹣2,0),進(jìn)而可得OE=2,DE=2+8﹣t=10﹣t,然后利用三角形的面積公式即可求△CED的面積S與D點(diǎn)運(yùn)動(dòng)時(shí)間t的函數(shù)解析式為:S=﹣t2+5t,然后轉(zhuǎn)化為頂點(diǎn)式即可求出最值為:S最大=
(3)由(2)知:當(dāng)t=5時(shí),S最大=,進(jìn)而可知:當(dāng)t=5時(shí),OC=5,OD=3,進(jìn)而可得CD=,從而確定C(0,5),D(3,0)然后根據(jù)待定系數(shù)法求出直線CD的解析式為:y=﹣x+5,然后過(guò)E點(diǎn)作EF∥CD,交拋物線與點(diǎn)P,然后求出直線EF的解析式,與拋物線聯(lián)立方程組解得即可得到其中的一個(gè)點(diǎn)P的坐標(biāo),然后利用面積法求出點(diǎn)E到CD的距離為:,然后過(guò)點(diǎn)D作DN⊥CD,垂足為N,且使DN=,然后求出N的坐標(biāo),然后過(guò)點(diǎn)N作NH∥CD,與拋物線交與點(diǎn)P,然后求出直線NH的解析式,與拋物線聯(lián)立方程組求解即可得到其中的另兩個(gè)點(diǎn)P的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE,垂足為G,BG=4 ,則△CEF的周長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)計(jì)算:﹣(﹣2)+(1+π)0﹣||+
(2)先化簡(jiǎn),再求值:(x+2)(x﹣2)﹣x(x+3),其中x=﹣3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:|﹣2|++2﹣1﹣cos60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以ABCO的頂點(diǎn)O為原點(diǎn),邊OC所在直線為x軸,建立平面直角坐標(biāo)系,頂點(diǎn)A、C的坐標(biāo)分別是(2,4)、(3,0),過(guò)點(diǎn)A的反比例函數(shù)的圖象交BC于D,連接AD,則四邊形AOCD的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD的外側(cè),作等邊三角形CDE,連接AE,BE,則∠AEB的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱軸l為x=﹣1.

(1)求拋物線的解析式并寫(xiě)出其頂點(diǎn)坐標(biāo);
(2)若動(dòng)點(diǎn)P在第二象限內(nèi)的拋物線上,動(dòng)點(diǎn)N在對(duì)稱軸l上.
①當(dāng)PA⊥NA,且PA=NA時(shí),求此時(shí)點(diǎn)P的坐標(biāo);
②當(dāng)四邊形PABC的面積最大時(shí),求四邊形PABC面積的最大值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:|﹣3|+2cos30°+(0﹣(﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年4月25日14時(shí)11分,尼泊爾發(fā)生8.1級(jí)地震,震源深度20千米.中國(guó)救援隊(duì)火速趕往災(zāi)區(qū)救援,探測(cè)出某建筑物廢墟下方點(diǎn)C處有生命跡象.在廢墟一側(cè)某面上選兩探測(cè)點(diǎn)A、B,AB相距2米,探測(cè)線與該面的夾角分別是30°和45°(如圖).試確定生命所在點(diǎn)C與探測(cè)面的距離.(參考數(shù)據(jù)≈1.41,≈1.73)

查看答案和解析>>

同步練習(xí)冊(cè)答案