【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象有公共點A(1,2),D(-2,-1).直線l⊥x軸,與x軸交于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B,C.
(1)求一次函數(shù)與反比例函數(shù)的表達式;
(2)求△ABC的面積;
(3)根據(jù)圖象回答:當(dāng)x在什么范圍時,一次函數(shù)的值大于反比例函數(shù)的值.
【答案】(1) y=x+1,;(2) S△ABC=;(3)-2<x<0或x>1.
【解析】
(1)利用待定系數(shù)法即可求得函數(shù)的解析式;
(2)首先求得B和C的坐標(biāo),則BC的長即可求得,然后利用三角形的面積公式求解;
(3)求一次函數(shù)的值大于反比例函數(shù)時x的范圍就是求一次函數(shù)的圖象在反比例函數(shù)的圖象的上邊部分對應(yīng)的自變量x的范圍.
(1)把(1,2)代入y=,得m=2,則反比例函數(shù)的表達式是y=.
根據(jù)題意,得解得
則一次函數(shù)的表達式是y=x+1.
(2)在y=中,令x=3得y=,則點C的坐標(biāo)是(3,).
在y=x+1中,令x=3,則y=4,則點B的坐標(biāo)是(3,4).
則BC=4-=,
則S△ABC=××(3-1)=.
(3)-2<x<0或x>1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明
如圖,點E在直線DF上,點B在直線AC上,若,.
求證:.
證明:
______對頂角相等
,
______
____________
又
,
____________
______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,點D是邊BC的中點,點E是邊AB上的任意一點(點E不與點B重合),沿DE翻折△DBE使點B落在點F處,連接AF,則線段AF的長取最小值時,BF的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,∠ABC=60°,AB=4,AD=8,點E,F(xiàn)分別是邊BC,AD的中點,點M是AE與BF的交點,點N是CF與DE的交點,則四邊形ENFM的周長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是平行四邊形(如圖),把△ABD沿對角線BD翻折180°得到△AˊBD.
(1)利用尺規(guī)作出△AˊBD.(要求保留作圖痕跡,不寫作法);
(2)設(shè)D Aˊ 與BC交于點E,求證:△BAˊE≌△DCE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把三張形狀、大小均相同但畫面不同的風(fēng)景圖片都按同樣的方式剪成相同的兩片,然后堆放到一起混合洗勻,背面朝上,從這堆圖片中隨機抽出兩張,這兩張圖片恰好能組成一張原風(fēng)景圖片的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,射線AM⊥AB,點P在AM上,連接OP交半圓O于點D,PC切半圓O于點C,連接BC,OC.
(1)求證:△OAP≌△OCP;
(2)若半圓O的半徑等于2,填空: ①當(dāng)AP=時,四邊形OAPC是正方形;
②當(dāng)AP=時,四邊形BODC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:3.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是一個無理數(shù)篩選器的工作流程圖.
(1)當(dāng)為16時,值為 ;
(2)是否存在輸入有意義的值后,卻始終輸不出值?如果存在,寫出所有滿足要求的值;如果不存在,請說明理由;
(3)如果輸入值后,篩選器的屏幕顯示“該操作無法運行”,請你分析輸入的值可能是什么情況;
(4)當(dāng)輸出的值是時,判斷輸入的值是否唯一,如果不唯一,請寫出其中的兩個.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com