如果不論k取何值,x=-1總是關于x的方程的解,則
[     ]
A.a=,b=
B.a=,b=
C.a=,b=0
D.b=,a=0
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網已知點P的坐標為(m,0),在x軸上存在點Q(不與P點重合),以PQ為邊作正方形PQMN,使點M落在反比例函數(shù)y=-
2
x
的圖象上.小明對上述問題進行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形只有兩個,且一個正方形的頂點M在第四象限,另一個正方形的頂點M1在第二象限.
(1)如圖所示,若反比例函數(shù)解析式為y=-
2
x
,P點坐標為(1,0),圖中已畫出一符合條件的一個正方形PQMN,請你在圖中畫出符合條件的另一個正方形PQ1M1N1,并寫出點M1的坐標;M1的坐標是
 

(2)請你通過改變P點坐標,對直線M1M的解析式y(tǒng)﹦kx+b進行探究可得k﹦
 
,若點P的坐標為(m,0)時,則b﹦
 
;
(3)依據(2)的規(guī)律,如果點P的坐標為(6,0),請你求出點M1和點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中.AB∥CD,AB=12cm,CD=6cm,DA=3cm,∠D=∠A=90°,點P沿AB邊從點A開始向點B以2cm/s的速度移動;點Q沿DA邊從點D開始向點A以1cm/s的精英家教網速度移動,如果P、Q同時出發(fā),用t表示移動的時間(單位:秒),并且0≤t≤3.
(1)當t為何值時,△QAP為等腰三角形;
(2)證明不論t取何值,四邊形QAPC的面積是一個定值,并且求出這個定值;
(3)請你探究△PBC能否構成直角三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中.AB∥CD,AB=12cm,CD=6cm,DA=3cm,∠D=∠A=90°,點P沿AB邊從點A開始向點B以2cm/s的速度移動;點Q沿DA邊從點D開始向點A以1cm/s的速度移動,如果P、Q同時出發(fā),用t表示移動的時間(單位:秒),并且0≤t≤3.
(1)證明不論t取何值,四邊形QAPC的面積是一個定值,并且求出這個定值;
(2)請問是否存在這樣的t,使得∠PCQ=90°?若存在,求出t的值;若不存在,請說明理由;
(3)請你探究△PBC能否構成直角三角形?若能,求出t的值;若不能,請說明理由.精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網本題為選做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計分.
選做題:甲:已知關于x的一元二次方程x2-(2m+1)x+m2+m-2=0
(1)求證:不論m取何值,方程總有兩個不相等的實數(shù)根;
(2)若方程的兩個實數(shù)根x1、x2滿足
1
x1
+
1
x2
=1+
1
m+2
,求m的值.
乙:如圖,點D是⊙O的直徑CA延長線上一點,點B在⊙O上,且AB=AD=AO.
(1)求證:BD是⊙O的切線.
(2)若點E是劣弧BC上一點,AE與BC相交于點F,且△BEF的面積為8,cos∠BFA=
2
3
,求△ACF的面積.

查看答案和解析>>

同步練習冊答案