【題目】如圖,將矩形紙片ABCD沿對(duì)角線BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DF交BC于點(diǎn)E.
(1)求證:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2).
【解析】
試題分析:(1)由AD∥BC,知∠ADB=∠DBC,根據(jù)折疊的性質(zhì)∠ADB=∠BDF,所以∠DBC=∠BDF,得BE=DE,即可用AAS證△DCE≌△BFE;
(2)在Rt△BCD中,CD=2,∠ADB=∠DBC=30°,知BC=,在Rt△BCD中,CD=2,∠EDC=30°,知CE=,所以BE=BC﹣EC=.
試題解析:(1)∵AD∥BC,∴∠ADB=∠DBC,根據(jù)折疊的性質(zhì)∠ADB=∠BDF,∠F=∠A=∠C=90°,∴∠DBC=∠BDF,∴BE=DE,在△DCE和△BFE中,∵∠BEF=∠DEC,∠F=∠C,BE=DE,∴△DCE≌△BFE;
(2)在Rt△BCD中,∵CD=2,∠ADB=∠DBC=30°,∴BC=,在Rt△BCD中,∵CD=2,∠EDC=30°,∴DE=2EC,∴,∴CE=,∴BE=BC﹣EC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市中小學(xué)全面開展“陽(yáng)光體育”活動(dòng),某校在大課間中開設(shè)了A:體操,B:跑操,C:舞蹈,D:健美操四項(xiàng)活動(dòng),為了解學(xué)生最喜歡哪一項(xiàng)活動(dòng),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有人.
(2)請(qǐng)將統(tǒng)計(jì)圖2補(bǔ)充完整.
(3)統(tǒng)計(jì)圖1中B項(xiàng)目對(duì)應(yīng)的扇形的圓心角是度.
(4)已知該校共有學(xué)生3600人,請(qǐng)根據(jù)調(diào)查結(jié)果估計(jì)該校喜歡健美操的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù),其中.
(1)求該二次函數(shù)的對(duì)稱軸方程;
(2)過(guò)動(dòng)點(diǎn)C(0, )作直線⊥y軸.
① 當(dāng)直線與拋物線只有一個(gè)公共點(diǎn)時(shí), 求與的函數(shù)關(guān)系;
② 若拋物線與x軸有兩個(gè)交點(diǎn),將拋物線在軸下方的部分沿軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象. 當(dāng)=7時(shí),直線與新的圖象恰好有三個(gè)公共點(diǎn),求此時(shí)的值;
(3)若對(duì)于每一個(gè)給定的x的值,它所對(duì)應(yīng)的函數(shù)值都不小于1,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E,F(xiàn)分別是AB,CD的中點(diǎn),G,H分別是AF,CE的中點(diǎn),連結(jié)EG,F(xiàn)H.
(1)四邊形EHFG是不是平行四邊形?如果是,請(qǐng)給出證明;如果不是,請(qǐng)說(shuō)明理由;
(2)求四邊形EHFG的面積與平行四邊形ABCD的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別延長(zhǎng)ABCD的邊CD,AB到E,F,使DE=BF,連接EF,分別交AD,BC于G,H,連結(jié)CG,AH.
求證:CG∥AH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C是BE上一點(diǎn),D是AC的中點(diǎn),且AB=AC,DE=DB,∠A=60°,△ABC的周長(zhǎng)是18cm.求∠E的度數(shù)及CE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店需要購(gòu)進(jìn)甲、乙兩種商品共180件,其進(jìn)價(jià)和售價(jià)如表:(注:獲利=售價(jià)﹣進(jìn)價(jià))
甲 | 乙 | |
進(jìn)價(jià)(元/件) | 14 | 35 |
售價(jià)(元/件) | 20 | 43 |
(1)若商店計(jì)劃銷售完這批商品后能獲利1240元,問(wèn)甲、乙兩種商品應(yīng)分別購(gòu)進(jìn)多少件?
(2)若商店計(jì)劃投入資金少于5040元,且銷售完這批商品后獲利多于1312元,請(qǐng)問(wèn)有哪幾種購(gòu)貨方案?并直接寫出其中獲利最大的購(gòu)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明. 已知:如圖,BE∥CD,∠A=∠1,
求證:∠C=∠E.
證明:∵BE∥CD (已知 )
∴∠2=∠C ()
又∵∠A=∠1 (已知 )
∴AC∥DE ()
∴∠2=∠E ()
∴∠C=∠E (等量代換 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰△ABC中,
(1)如圖1,若△ABC為等邊三角形,D為線段BC中點(diǎn),線段AD關(guān)于直線AB的對(duì)稱線段為線段AE,連接DE,則∠BDE的度數(shù)為___________;
(2)若△ABC為等邊三角形,點(diǎn)D為線段BC上一動(dòng)點(diǎn)(不與B,C重合),連接AD并將線段AD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°得到線段DE,連接BE.
①根據(jù)題意在圖2中補(bǔ)全圖形;
②小玉通過(guò)觀察、驗(yàn)證,提出猜測(cè):在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,恒有CD=BE.經(jīng)過(guò)與同學(xué)們的充分討論,形成了幾種證明的思路:
思路1:要證明CD=BE,只需要連接AE,并證明△ADC≌△AEB;
思路2:要證明CD=BE,只需要過(guò)點(diǎn)D作DF∥AB,交AC于F,證明△ADF≌△DEB;
思路3:要證明CD=BE,只需要延長(zhǎng)CB至點(diǎn)G,使得BG=CD,證明△ADC≌△DEG;
……
請(qǐng)參考以上思路,幫助小玉證明CD=BE.(只需要用一種方法證明即可)
(3)小玉的發(fā)現(xiàn)啟發(fā)了小明:如圖3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此時(shí)小明發(fā)現(xiàn)BE,BD,AC三者之間滿足一定的的數(shù)量關(guān)系,這個(gè)數(shù)量關(guān)系是______________________.(直接給出結(jié)論無(wú)須證明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com