【題目】在五邊形ADBCE中,∠ADB=∠AEC=90°,∠DAB=∠EAC,M、N、O分別為AC、AB、BC的中點(diǎn).

(1)求證:△EMO≌△OND;

(2)若AB=AC,且∠BAC=40°,當(dāng)∠DAB等于多少時(shí),四邊形ADOE是菱形,并證明.

【答案】(1)證明見(jiàn)解析(2)當(dāng)DAB等于35°時(shí),四邊形ADOE是菱形

【解析】試題分析:(1)根據(jù)直角三角形斜邊中線等于斜邊一半得:DN=AB,由中位線定理得:OM=AB,則OM=DN,同理得:ON=ME,再根據(jù)外角定理和已知證明其夾角相等,則兩三角形全等;

2)連接AO,當(dāng)∠DAB等于35°時(shí),四邊形ADOE是菱形,如圖2,設(shè)∠DAB=x°,則∠BND=2x°,易證得OD=OEAD=AE,因此只要AD=OD,四邊形ADOE就是菱形;即∠DAO=∠AOD列關(guān)于x的方程解出即可.

試題解析:證明:1∵∠ADB=90°,NAB的中點(diǎn),DN=AB=AN,∴∠ADN=BAD,OAB的中點(diǎn)MAC的中點(diǎn),OMABC的中位線,OM=ABOMAB,∴∠OMC=BAC同理得BNO=BAC,∴∠BNO=OMC,DN=ABOM=AB,DN=OM,同理得ME=ON∵∠BND=ADN+BAD,CME=CAE+AEM∴∠BND=2BAD,CME=2CAE∵∠BAD=CAE,∴∠BND=CME,∴∠BND+BNO=CME+OMC,DNO=EMO,∴△EMO≌△OND

2)當(dāng)DAB等于35°時(shí),四邊形ADOE是菱形,理由是

如圖2連接AO,設(shè)DAB=x°,BND=2x°AB=AC,OBC的中點(diǎn)AO平分BAC,AOBC∵∠BAC=40°,∴∠BAO=20°,RtABO,NAB的中點(diǎn),ON=AB=AN∴∠BAO=AON=20°,∴∠BNO=40°,由(1)得ON=AC,DN=AB,ON=DN,∴∠NDO=NOD=180°-DNO=90°2x°+40°=70°x°∵∠ADB=AEC=90°,BAD=CAE,AB=AC,∴△ADB≌△AEC,AD=AE由(1)得EMO≌△OND,OD=OE當(dāng)AD=OD時(shí),四邊形ADOE是菱形,DAO=AOD,x+20=70x+20x=35,當(dāng)DAB等于35°時(shí)四邊形ADOE是菱形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論中,錯(cuò)誤結(jié)論有( );①三角形三條高(或高的延長(zhǎng)線)的交點(diǎn)不在三角形的內(nèi)部,就在三角形的外部;②一個(gè)多邊形的邊數(shù)每增加一條,這個(gè)多邊形的內(nèi)角和就增加360;③兩條平行直線被第三條直線所截,同旁內(nèi)角的角平分線互相平行;④三角形的一個(gè)外角等于任意兩個(gè)內(nèi)角的和;⑤在中,若,則為直角三角形;⑥順次延長(zhǎng)三角形的三邊,所得的三角形三個(gè)外角中銳角最多有一個(gè)

A. 6個(gè)B. 5個(gè)C. 4個(gè)D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明騎自行車(chē)上學(xué),開(kāi)始以正常速度勻速行駛,但行至中途時(shí),自行車(chē)出了故障,只好停下來(lái)修車(chē),車(chē)修好后,因怕耽誤上課,他比修車(chē)前加快了速度繼續(xù)勻速行駛,下面是行駛路程sm)關(guān)于時(shí)間tmin)的函數(shù)圖象,那么符合小明行駛情況的大致圖象是()

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1y=x-3x軸,y軸分別交于點(diǎn)A和點(diǎn)B

1)求點(diǎn)A和點(diǎn)B的坐標(biāo);

2)將直線l1向上平移6個(gè)單位后得到直線l2,求直線l2的函數(shù)解析式;

3)設(shè)直線l2x軸的交點(diǎn)為M,則MAB的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市推出電腦上網(wǎng)包月制,每月收取費(fèi)用y(元)與上網(wǎng)時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示,其中BA是線段,且BAx軸,AC是射線.

(1)當(dāng)x30,求y與x之間的函數(shù)關(guān)系式;

(2)若小李4月份上網(wǎng)20小時(shí),他應(yīng)付多少元的上網(wǎng)費(fèi)用?

(3)若小李5月份上網(wǎng)費(fèi)用為75元,則他在該月份的上網(wǎng)時(shí)間是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,AD△ABC外角的平分線,已知∠BAC=∠ACD

1)求證:△ABC≌△CDA;

2)若∠B=60°,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù).

(1)滿足何條件時(shí),yx的增大而減。

(2)滿足何條件時(shí),圖像經(jīng)過(guò)第一、二、四象限;

(3)滿足何條件時(shí),它的圖像與y軸的交點(diǎn)在x軸的上方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,A=36°,∠C=72°,點(diǎn)DAC上,BC=BD,DEBCAB于點(diǎn)E,則圖中等腰三角形共有( )

A. 3個(gè)B. 4個(gè)C. 5個(gè)D. 6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC和△DCE中,CA=CB,CD=CE,∠CAB= CED=α.

(1)如圖1,將AD、EB延長(zhǎng),延長(zhǎng)線相交于點(diǎn)0.

①求證:BE= AD;

②用含α的式子表示∠AOB的度數(shù)(直接寫(xiě)出結(jié)果);

(2)如圖2,當(dāng)α=45°時(shí),連接BD、AE,CMAEM點(diǎn),延長(zhǎng)MCBD交于點(diǎn)N.求證:NBD的中點(diǎn).

:(2)問(wèn)的解答過(guò)程無(wú)需注明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案