【題目】如圖,點(diǎn)D為O上的一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線(xiàn)上,并且CDA=CBD

(1)求證:CD是O的切線(xiàn);

(2)過(guò)點(diǎn)B作O的切線(xiàn),交CD的延長(zhǎng)線(xiàn)于點(diǎn)E,若BC=12,tanCDA=,求BE的長(zhǎng).

【答案】1)證明見(jiàn)解析;(2)5

【解析】

試題分析:(1)連OD,OE,根據(jù)圓周角定理得到ADO+1=90°,而CDA=CBD,CBD=1,于是CDA+ADO=90°;

(2)根據(jù)切線(xiàn)的性質(zhì)得到ED=EB,OEBD,則ABD=OEB,得到tanCDA=tanOEB=,易證RtCDORtCBE,得到,求得CD,然后在RtCBE中,運(yùn)用勾股定理可計(jì)算出BE的長(zhǎng).

(1)證明:連OD,OE,如圖,

AB為直徑,

∴∠ADB=90°,即ADO+1=90°,

∵∠CDA=CBD,

CBD=1,

∴∠1=CDA

∴∠CDA+ADO=90°,即CDO=90°

CDO的切線(xiàn);

(2)解:EBO的切線(xiàn),

ED=EB,OEDB

∴∠ABD+DBE=90°,OEB+DBE=90°,

∴∠ABD=OEB,

∴∠CDA=OEB

而tanCDA=,

tanOEB==,

RtCDORtCBE,(1)證明:連OD,OE,如圖,

AB為直徑,

∴∠ADB=90°,即ADO+1=90°

∵∠CDA=CBD,

CBD=1,

∴∠1=CDA,

∴∠CDA+ADO=90°,即CDO=90°,

CDO的切線(xiàn);

,

CD=×12=8,

在RtCBE中,設(shè)BE=x,

(x+8)2=x2+122

解得x=5.

即BE的長(zhǎng)為5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算6x3x2的結(jié)果是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn):﹣3(x﹣2y)+4(x﹣2y)=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算 (x2) 2的結(jié)果為x2x4,則“□”中的數(shù)為

A2 B2 C4 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次函數(shù)ykx+1中,若yx的增大而增大,則它的圖象不經(jīng)過(guò)第( 。┫笙

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知RtABC中,ABC=90°,先把ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°至DBE后,再把ABC沿射線(xiàn)平移至FEG,DE、FG相交于點(diǎn)H.

(1)判斷線(xiàn)段DE、FG的位置關(guān)系,并說(shuō)明理由;

(2)連結(jié)CG,求證:四邊形CBEG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)y1=x與雙曲線(xiàn)y2=(k>0)交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4.

(1)k的值為 ;當(dāng)x的取值范圍為 時(shí),y1>y2

(2)若雙曲線(xiàn)y2=(k>0)上一點(diǎn)C的縱坐標(biāo)為8,求AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC、BD是一斜坡AB上的兩幢樓房,斜坡AB的坡度是1:2,從點(diǎn)A測(cè)得樓BD頂部D處的仰角60°,從點(diǎn)B測(cè)得樓AC頂部C處的仰角30°,樓BD自身高度BD比樓AC高12米,求樓AC和樓BD之間的水平距離?(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若代數(shù)式2x2+3x+7的值為8,則代數(shù)式4x2+6x-9的值是( )

A. 13 B. 2 C. 17 D. -7

查看答案和解析>>

同步練習(xí)冊(cè)答案