【題目】某商場(chǎng)銷(xiāo)售一種商品的進(jìn)價(jià)為每件30元,銷(xiāo)售過(guò)程中發(fā)現(xiàn)月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系如圖所示.
(1)根據(jù)圖象直接寫(xiě)出y與x之間的函數(shù)關(guān)系式.
(2)設(shè)這種商品月利潤(rùn)為W(元),求W與x之間的函數(shù)關(guān)系式.
(3)這種商品的銷(xiāo)售單價(jià)定為多少元時(shí),月利潤(rùn)最大?最大月利潤(rùn)是多少?
【答案】(1)y=;(2)W=;(3)這種商品的銷(xiāo)售單價(jià)定為65元時(shí),月利潤(rùn)最大,最大月利潤(rùn)是3675.
【解析】
(1)當(dāng)40≤x≤60時(shí),設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,當(dāng)60<x≤90時(shí),設(shè)y與x之間的函數(shù)關(guān)系式為y=mx+n,解方程組即可得到結(jié)論;
(2)當(dāng)40≤x≤60時(shí),當(dāng)60<x≤90時(shí),根據(jù)題意即可得到函數(shù)解析式;
(3)當(dāng)40≤x≤60時(shí),W=-x2+210x-5400,得到當(dāng)x=60時(shí),W最大=-602+210×60-5400=3600,當(dāng)60<x≤90時(shí),W=-3x2+390x-9000,得到當(dāng)x=65時(shí),W最大=-3×652+390×65-9000=3675,于是得到結(jié)論.
解:(1)當(dāng)40≤x≤60時(shí),設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,
將(40,140),(60,120)代入得,
解得:,
∴y與x之間的函數(shù)關(guān)系式為y=﹣x+180;
當(dāng)60<x≤90時(shí),設(shè)y與x之間的函數(shù)關(guān)系式為y=mx+n,
將(90,30),(60,120)代入得,
解得:,
∴y=﹣3x+300;
綜上所述,y=;
(2)當(dāng)40≤x≤60時(shí),W=(x﹣30)y=(x﹣30)(﹣x+180)=﹣x2+210x﹣5400,
當(dāng)60<x≤90時(shí),W=(x﹣30)(﹣3x+300)=﹣3x2+390x﹣9000,
綜上所述,W=;
(3)當(dāng)40≤x≤60時(shí),W=﹣x2+210x﹣5400,
∵﹣1<0,對(duì)稱(chēng)軸x==105,
∴當(dāng)40≤x≤60時(shí),W隨x的增大而增大,
∴當(dāng)x=60時(shí),W最大=﹣602+210×60﹣5400=3600,
當(dāng)60<x≤90時(shí),W=﹣3x2+390x﹣9000,
∵﹣3<0,對(duì)稱(chēng)軸x==65,
∵60<x≤90,
∴當(dāng)x=65時(shí),W最大=﹣3×652+390×65﹣9000=3675,
∵3675>3600,
∴當(dāng)x=65時(shí),W最大=3675,
答:這種商品的銷(xiāo)售單價(jià)定為65元時(shí),月利潤(rùn)最大,最大月利潤(rùn)是3675.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)O是等邊三角形ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α, 以OC為邊作等邊三角形OCD,連接AD.
(1)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由;
(2)探究:當(dāng)a為多少度時(shí),△AOD是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明騎自行車(chē)去學(xué)校,最初以某一速度勻速行駛,中途自行車(chē)發(fā)生故障,停下來(lái)修車(chē)耽誤了幾分鐘,為了按時(shí)到校,他加快了速度,仍保持勻速行駛,結(jié)果準(zhǔn)時(shí)到校,到校后,小明畫(huà)了自行車(chē)行進(jìn)路程s(km)與行進(jìn)時(shí)間t(h)的圖象,如圖所示,請(qǐng)回答:
(1)這個(gè)圖象反映了哪兩個(gè)變量之間的關(guān)系?
(2)根據(jù)圖象填表:
時(shí)間t/h | 0 | 0.2 | 0.3 | 0.4 |
路程s/km |
(3)路程s可以看成時(shí)間t的函數(shù)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是邊長(zhǎng)為4的正方形,點(diǎn)P是平面內(nèi)一點(diǎn).且滿(mǎn)足BP⊥PC,現(xiàn)將點(diǎn)P繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90度,則CQ的最大值=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】剪紙是中國(guó)特有的民間藝術(shù).在如圖所示的四個(gè)剪紙圖案中.既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,且點(diǎn)E在線(xiàn)段AD上,若AF=4,∠F=60°.
(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;
(2)求DE的長(zhǎng)度和∠EBD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△BCD中,DF⊥BC于點(diǎn)F,點(diǎn)A為直線(xiàn)DF上一動(dòng)點(diǎn),以B為旋轉(zhuǎn)中心,把BA順時(shí)針?lè)较蛐D(zhuǎn)60°至BE,連接EC.
(1)當(dāng)點(diǎn)A在線(xiàn)段DF的延長(zhǎng)線(xiàn)上時(shí),
①求證:DA=CE;
②判斷∠DEC和∠EDC的數(shù)量關(guān)系,并說(shuō)明理由;
(2)當(dāng)∠DEC=45°時(shí),連接AC,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,∠B=30°,∠ACB=100°,AE平分∠BAC,求∠EAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰三角形一腰上的中線(xiàn)將三角形的周長(zhǎng)分為9cm和15cm兩部分,求這個(gè)等腰三角形的底邊長(zhǎng)和腰長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com