如圖,拋物線軸交于兩點,與軸正半軸交于點,且,0),
(1)求出拋物線的解析式;
(2)如圖①,作矩形,使過點,點邊上的一動點,連接,作于點,設(shè)線段的長為,線段的長為,當點運動時,求的函數(shù)關(guān)系式并寫出自變量的取值范圍,在同一直角坐標系中,該函數(shù)的圖象與圖①的拋物線中≥0的部分有何關(guān)系?
(3)如圖②,在圖①的拋物線中,點為其頂點,為拋物線上一動點(不與重合),取點,0),作(點、、按逆時針順序),當點在拋物線上運動時,直線、是否存在某種位置關(guān)系?若存在,寫出并證明你的結(jié)論;若不存在,請說明理由。
解:(1)∵,
∴拋物線的對稱軸為
,0),∴(2,0)
,∴(0,4)
,
, 
 
(2)∵四邊形為矩形,,

,即,
,(
又∵,
,
∴圖①的拋物線中,≥0時,,
≥0的部分向右平移4個單位得到).
(3),理由如下:
連接并延長交延長線于點,設(shè)直線、交于點,
∵點H為拋物線的頂點,
∴H(),
且A(,0),,0),

,
,且
,

,
∴ 

,則
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與軸交于,0)、,0)兩點,且,與軸交于點,其中是方程的兩個根。(14分)

(1)求拋物線的解析式;

(2)點是線段上的一個動點,過點,交于點,連接,當的面積最大時,求點的坐標;

(3)點在(1)中拋物線上,

為拋物線上一動點,在軸上是

否存在點,使以為頂

點的四邊形是平行四邊形,如果存在,

求出所有滿足條件的點的坐標,

若不存在,請說明理由。

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線軸交于兩點,與軸相交于點.連結(jié)AC、BC,B、C兩點的坐標分別為B(1,0)、,且當x=-10和x=8時函數(shù)的值相等.

 

 

1.求a、b、c的值;

2.若點同時從點出發(fā),均以每秒1個單位長度的速度分別沿邊運動,其中一個點到達終點時,另一點也隨之停止運動.連結(jié),將沿翻折,當運動時間為幾秒時,點恰好落在邊上的處?并求點的坐標及四邊形的面積;

3.上下平移該拋物線得到新的拋物線,設(shè)新拋物線的頂點為D,對稱軸與x軸的交點為E,若△ODE與△OBC相似,求新拋物線的解析式。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線軸交于A、B兩點,與軸交于C點,四邊形OBHC為矩形,CH的延長線交拋物線于點D(5,2),連結(jié)BC、AD.

(1)求C點的坐標及拋物線的解析式;

(2)將△BCH繞點B按順時針旋轉(zhuǎn)90º后再沿軸對折得到△BEF(點C與點E對應(yīng)),判斷點E是否落在拋物線上,并說明理由;

(3)設(shè)過點E的直線交AB邊于點P,交CD邊于點Q. 問是否存在點P,使直線PQ分梯形ABCD的面積為1∶3兩部分?若存在,求出P點坐標;若不存在,請說明理由.                                                                                     

       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆四川省鹽邊縣紅格中學(xué)九年級下學(xué)期摸底考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,拋物線軸交于兩點,與軸交于點.

(1)請求出拋物線頂點的坐標(用含的代數(shù)式表示),兩點的坐標;
(2)經(jīng)探究可知,的面積比不變,試求出這個比值;
(3)是否存在使為直角三角形的拋物線?若存在,請求出;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆仙師中學(xué)九年級第一次月考試考試數(shù)學(xué)卷 題型:選擇題

如圖,拋物線與軸交于,0)、,0)兩點,且,與軸交于點,其中是方程的兩個根。(14分)

(1)求拋物線的解析式;

(2)點是線段上的一個動點,過點,交于點,連接,當的面積最大時,求點的坐標;

(3)點在(1)中拋物線上,

為拋物線上一動點,在軸上是

否存在點,使以為頂

點的四邊形是平行四邊形,如果存在,

求出所有滿足條件的點的坐標,

若不存在,請說明理由。

 

 

查看答案和解析>>

同步練習冊答案