【題目】某商場經(jīng)營一種商品,進價是每千克30元,根據(jù)市場調(diào)查發(fā)現(xiàn),每日的銷售量(千克)與售價(元/千克)滿足一次函數(shù)關(guān)系.下表記錄的是某兩日的有關(guān)數(shù)據(jù):
(元/千克) | 35 | 40 |
(千克) | 850 | 800 |
(1)求與的函數(shù)關(guān)系式(不求自變量的取值范圍);
(2)在銷售過程中銷售單價不低于成本價,且不高于80元,某日該商場出售這種商品獲得了14000元的利潤,求該商品的售價?
(3)若某日該商場這種商品的銷售量不少于500千克,求這一天該商場銷售這種商品獲得的最大利潤為多少元?
【答案】(1);(2)該海產(chǎn)品的售價是每千克50元;(3)該商場銷售這種海產(chǎn)品獲得的最大利潤是20000元
【解析】
(1)將點(35,850)、(40,800)代入一次函數(shù)表達式,即可求解;
(2)由題意得:(x-30)(-10x+1200)=14000,即可求解;
(3)由題意得:w=(x-30)(-10x+1200),即可求解.
(1) 設(shè)
由表格知,當時,;當時,;
得
解得:
∴ 與的函數(shù)關(guān)系式為:
(2)由題意可知,
整理得
∴或100
∵ 30≤≤80
∴=100不符題意,舍去
答:該海產(chǎn)品的售價是每千克50元.
(3)由題意可知:
∴≤70
設(shè)出售海產(chǎn)品的利潤為元
則:
=
=
∵-10<0
∴拋物線開口向下
∴當<75時,隨著的增大而增大
∵≤70
∴當=70時,
答:該商場銷售這種海產(chǎn)品獲得的最大利潤是20000元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖像分別交x、y軸于點A、B,拋物線經(jīng)過點A、B,點P為第四象限內(nèi)拋物線上的一個動點.
(1)求此拋物線對應的函數(shù)表達式;
(2)如圖1所示,過點P作PM∥y軸,分別交直線AB、x軸于點C、D,若以點P、B、C為頂點的三角形與以點A、C、D為頂點的三角形相似,求點P的坐標;
(3)如圖2所示,過點P作PQ⊥AB于點Q,連接PB,當△PBQ中有某個角的度數(shù)等于∠OAB度數(shù)的2倍時,請直接寫出點P的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c的對稱軸為直線x=﹣1,圖象過(1,0)點,部分圖象如圖所示,下列判斷中:
①abc>0;
②b2﹣4ac>0;
③9a﹣3b+c=0;
④若點(﹣0.5,y1),(﹣2,y2)均在拋物線上,則y1>y2;
⑤5a﹣2b+c<0.
其中正確的個數(shù)有( 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。動點P從點D出發(fā),沿射線DA的方向以每秒2兩個單位長的速度運動,動點Q從點C出發(fā),在線段CB上以每秒1個單位長的速度向點B運動,點P,Q分別從點D,C同時出發(fā),當點Q運動到點B時,點P隨之停止運動。設(shè)運動的時間為t(秒).
【1】設(shè)△BPQ的面積為S,求S與t之間的函數(shù)關(guān)系式
【2】當線段PQ與線段AB相交于點O,且2AO=OB時,求t的值.
【3】當t為何值時,以B,P,Q三點為頂點的三角形是等腰三角形?
【4】是否存在時刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一棵與地面垂直的筆直大樹,在點處被大風折斷后,部分倒下,樹的頂端與斜坡上的點重合(都保持筆直),經(jīng)測量,,則樹高為_______米(保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】五一期間,小紅和爸爸媽媽去開元寺參觀,對東西塔這對中國現(xiàn)存最高也是最大的石塔贊嘆不已,也對石塔的高度產(chǎn)生了濃厚的興趣.小紅進行了以下的測量:她到與西塔距離27米的一棟大樓處,在樓底A處測得塔頂B的仰角為60°,再到樓頂C處測得塔頂B的仰角為30°.那么你能幫小紅計算西塔BD和大樓AC的高度嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C為半徑OB上一點,過點C作CD⊥AB,交上半圓于D,連接AD,將線段CD繞D點順時針旋轉(zhuǎn)90°到ED.
(1)如圖1,當點E在⊙O上時,求證:CD=2OC;
(2)如圖2,當tanA=時,連接OE,求sin∠EOC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某興趣小組借助無人飛機航拍校園.如圖,無人飛機從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.已知無人飛機的飛行速度為4米/秒,求這架無人飛機的飛行高度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某次“小學生書法比賽”的成績情況,隨機抽取了30名學生的成績進行統(tǒng)計,并將統(tǒng)計情況繪成如圖所示的頻數(shù)分布直方圖,己知成績x(單位:分)均滿足“50≤x<100”.根據(jù)圖中信息回答下列問題:
(1)圖中a的值為 ;
(2)若要繪制該樣本的扇形統(tǒng)計圖,則成績x在“70≤x<80”所對應扇形的圓心角度數(shù)為 度;
(3)此次比賽共有300名學生參加,若將“x≥80”的成績記為“優(yōu)秀”,則獲得“優(yōu)秀“的學生大約有 人:
(4)在這些抽查的樣本中,小明的成績?yōu)?2分,若從成績在“50≤x<60”和“90≤x<100”的學生中任選2人,請用列表或畫樹狀圖的方法,求小明被選中的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com