【題目】如圖,拋物線y=ax2+bx+2交x軸于點A(-3,0)和點B(1,0),交y軸于點C.
(1)求這個拋物線的函數(shù)表達式.
(2)點D的坐標為(-1,0),點P為第二象限內(nèi)拋物線上的一個動點,求四邊形ADCP面積的最大值.
(3)點M為拋物線對稱軸上的點,問:在拋物線上是否存在點N,使△MNO為等腰直角三角形,且∠MNO為直角?若存在,請直接寫出點N的坐標;若不存在,請說明理由.
【答案】(1)y=-x2-x+2;(2)S的最大值為;(3)存在,點N的坐標為:(,)或(,)或(,)或(,).
【解析】
(1)拋物線的表達式為:y=a(x+3)(x-1)=a(x2+2x-3)=ax2+2ax-3a,即-3a=2,即可求解;
(2)S四邊形ADCP=S△APO+S△CPO-S△ODC,即可求解;
(3)分點N在x軸上方、點N在x軸下方兩種情況,分別求解.
解:(1)拋物線的表達式為:y=a(x+3)(x-1)=a(x2+2x-3)=ax2+2ax-3a,
即-3a=2,解得:a=-,
故拋物線的表達式為:y=-x2-x+2,
則點C(0,2),函數(shù)的對稱軸為:x=1;
(2)連接OP,設(shè)點P(x,-x2-x+2),
則S=S四邊形ADCP=S△APO+S△CPO-S△ODC=×AO×yP+×OC×|xP|-×CO×OD
=(-x2-x+2)×2×(-x)-=-x2-3x+2,
∵-1<0,故S有最大值,當x=-時,S的最大值為;
(3)存在,理由:
△MNO為等腰直角三角形,且∠MNO為直角時,點N的位置如下圖所示:
①當點N在x軸上方時,點N的位置為N1、N2,
N1的情況(△M1N1O):
設(shè)點N1的坐標為(x,-x2-x+2),則M1E=x+1,
過點N1作x軸的垂線交x軸于點F,過點M1作x軸的平行線交N1F于點E,
∵∠FN1O+∠M1N1E=90°,∠M1N1E+∠EM1N1=90°,∴∠EM1N1=∠FN1O,
∠M1N1E=∠N1OF=90°,ON1=M1N1,
∴△M1N1E≌△N1OF(AAS),∴M1E=N1F,
即:x+1=-x2-x+2,解得:x=(舍去負值),
則點N1(,);
N2的情況(△M2N2O):
同理可得:點N2(,);
②當點N在x軸下方時,點N的位置為N3、N4,
同理可得:點N3、N4的坐標分別為:(,)、(,);
綜上,點N的坐標為:(,)或(,)或(,)或(,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系xOy中,矩形OABC的邊長OA、OC分別為12cm、6cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B,且18a+c=0.
(1)求拋物線的解析式.
(2)如果點P由點A開始沿AB邊以1cm/s的速度向終點B移動,同時點Q由點B開始沿BC邊以2cm/s的速度向終點C移動.
①移動開始后第t秒時,設(shè)△PBQ的面積為S,試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.
②當S取得最大值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點P(2,3)在反比例函數(shù)y =(k≠0)的圖象上
(1)當y=-3時,求x的值;
(2)當1<x<3時,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)和一次函數(shù),其中一次
函數(shù)圖象經(jīng)過(a,b)與(a+1,b+k)兩點.
(1) 求反比例函數(shù)的解析式.
(2) 如圖,已知點A是第一象限內(nèi)上述兩個函數(shù)圖象的交點,求A點坐標.
(3) 利用(2)的結(jié)果,請問:在X軸上是否存在點P,使△AOP為等腰三角形?若存在,把符合條件的P點坐標都求出來;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,將△ABC繞點A逆時針旋轉(zhuǎn)60°,得到△ADE,若AB=2,∠ACB=30°,則線段CD的長度為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB經(jīng)過x軸上的點A(2,0),且與拋物線相交于B、C兩點,已知B點坐標為(1,1) .
(1)求直線和拋物線的解析式;
(2)如果D為拋物線上一點,使得△AOD與△OBC的面積相等,求D點坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC,∠C=90°,AC=BC=a,在△ABC中截出一個正方形A1B1C1D1,使點A1,D1分別在AC,BC邊上,邊B1C1在AB邊上;在△BC1D1在截出第二個正方形A2B2C2D2,使點A2,D2分別在BC1,D1C1邊上,邊B2C2在BD1邊上;…,依此方法作下去,則第n個正方形的邊長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于某一函數(shù)給出如下定義:對于任意實數(shù),當自變量時,函數(shù)關(guān)于的函數(shù)圖象為,將沿直線翻折后得到的函數(shù)圖象為,函數(shù)的圖象由和兩部分共同組成,則函數(shù)為原函數(shù)的“對折函數(shù)”,如函數(shù)()的對折函數(shù)為.
(1)求函數(shù)()的對折函數(shù);
(2)若點在函數(shù)()的對折函數(shù)的圖象上,求的值;
(3)當函數(shù)()的對折函數(shù)與軸有不同的交點個數(shù)時,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,點A的坐標為(0,1),取一點B(b,0),連接AB,作線段AB的垂直平分線,過點B作X軸的垂線,記,的交點為P。
(1)當b=3時,在圖1中補全圖形(尺規(guī)作圖,不寫作法,保留作圖痕跡)。
(2)小慧多次取不同數(shù)值b,得出相應(yīng)的點P,并把這些點用平滑的曲線連接起來,發(fā)現(xiàn):這些點P竟然在一條曲線L上。
①設(shè)點P的坐標為(x,y),試求y與x之間的關(guān)系式,并指出曲線L是哪種曲線。
②設(shè)點P到x軸,y軸的距離分別為,,求+的范圍。當+=8時,求點P的坐標。
③將曲線在直線y=2下方的部分沿直線y=2向上翻折,得到一條“W”形狀的新曲線,若直線y=kx+3與這條“W”形狀的新曲線有4個交點,直接寫出k的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com