【題目】只有1和它本身兩個(gè)因數(shù)且大于1的正整數(shù)叫做素?cái)?shù).我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想是:每個(gè)大于2的偶數(shù)都可以表示為兩個(gè)素?cái)?shù)的和,如16=3+ 13.
(1)若從7, 11, 19, 23中隨機(jī)抽取1個(gè)素?cái)?shù),則抽到的素?cái)?shù)是7的概率是_______;
(2)若從7, 11, 19, 23中隨機(jī)抽取1個(gè)素?cái)?shù),再?gòu)挠嘞碌?/span>3個(gè)數(shù)字中隨機(jī)抽取1個(gè)素?cái)?shù),用面樹狀圖或列表的方法求抽到的兩個(gè)素?cái)?shù)之和大于等于30的概率,
【答案】(1);(2)
【解析】
(1)直接根據(jù)概率公式計(jì)算可得;
(2)畫樹狀圖得出所有等可能結(jié)果,再?gòu)闹姓业椒蠗l件的結(jié)果數(shù),利用概率公式計(jì)算可得.
解: (1) 因?yàn)?/span>7, 11, 19, 23共有4個(gè)數(shù),其中素?cái)?shù)7只有1個(gè),
所以從7, 11, 19, 23中隨機(jī)抽取1個(gè)素?cái)?shù),則抽到的素?cái)?shù)是7的概率是,
故答案為.
(2)由題意畫樹狀圖如下:
由樹狀圖可知,共有12種等可能的結(jié)果,其中抽到的兩個(gè)素?cái)?shù)之和大于等于30的結(jié)果有8種,故所求概率
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】成都市某景區(qū)經(jīng)營(yíng)一種新上市的紀(jì)念品,進(jìn)價(jià)為20元/件,試營(yíng)銷階段發(fā)現(xiàn);當(dāng)銷售單價(jià)是30元時(shí),每天的銷售量為200件;銷售單價(jià)每上漲2元,每天的銷售量就減少10件.這種紀(jì)念品的銷售單價(jià)為x(元).
(1)試確定日銷售量y(臺(tái))與銷售單價(jià)為x(元)之間的函數(shù)關(guān)系式;
(2)若要求每天的銷售量不少于15件,且每件紀(jì)念品的利潤(rùn)至少為30元,則當(dāng)銷售單價(jià)定為多少時(shí),該紀(jì)念品每天的銷售利潤(rùn)最大,最大利潤(rùn)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=20cm,AC=15cm,在這個(gè)直角三角形內(nèi)有一個(gè)內(nèi)接正方形,正方形的一邊FG在BC上,另兩個(gè)頂點(diǎn)E、H分別在邊AB、AC上.
(1)求BC邊上的高;
(2)求正方形EFGH的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為某海域示意圖,其中燈塔D的正東方向有一島嶼C.一艘快艇以每小時(shí)20nmile的速度向正東方向航行,到達(dá)A處時(shí)得燈塔D在東北方向上,繼續(xù)航行0.3h,到達(dá)B處時(shí)測(cè)得燈塔D在北偏東30°方向上,同時(shí)測(cè)得島嶼C恰好在B處的東北方向上,此時(shí)快艇與島嶼C的距離是多少?(結(jié)果精確到1nmile.參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,點(diǎn)從點(diǎn)沿邊,勻速運(yùn)動(dòng)到點(diǎn),過(guò)點(diǎn)作交于點(diǎn),線段,,,則能夠反映與之間函數(shù)關(guān)系的圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,點(diǎn)E是線段AC上的一個(gè)動(dòng)點(diǎn)且=k(0<k<1),點(diǎn)F在線段BC上,且DEFH為矩形;過(guò)點(diǎn)E作MN⊥BC,分別交AD,BC于點(diǎn)M,N.
(1)求證:△MED∽△NFE;
(2)當(dāng)EF=FC時(shí),求k的值.
(3)當(dāng)矩形EFHD的面積最小時(shí),求k的值,并求出矩形EFHD面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為( )
A.(,0)B.(2,0)C.(,0)D.(3,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】游泳是一項(xiàng)深受青少年喜愛的體育運(yùn)動(dòng),某中學(xué)為了加強(qiáng)學(xué)生的游泳安全意識(shí),組織學(xué)生觀看了紀(jì)實(shí)片“孩子,請(qǐng)不要私自下水”,并于觀看后在本校的名學(xué)生中作了抽樣調(diào)查.制作了下面兩個(gè)不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)這兩個(gè)統(tǒng)計(jì)圖回答以下問題:
(I)這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校名學(xué)生中大約有多少人“結(jié)伴時(shí)會(huì)下河學(xué)游泳”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是二次函數(shù)y=ax2+bx+c圖象的一部分,其對(duì)稱軸是x=﹣1,且過(guò)點(diǎn)(﹣3,0),下列說(shuō)法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是拋物線上兩點(diǎn),則y1=y2;④4a+2b+c<0,其中說(shuō)法正確的( 。
A.①②B.①②③C.①②④D.②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com