如圖,點M是反比例函數(shù)y=在第一象限內(nèi)圖象上的點,作MB⊥x軸于B.過點M的第一條直線交y軸于點A1,交反比例函數(shù)圖象于點C1,且A1C1=A1M,△A1C1B的面積記為S1;過點M的第二條直線交y軸于點A2,交反比例函數(shù)圖象于點C2,且A2C2=A2M,△A2C2B的面積記為S2;過點M的第三條直線交y軸于點A3,交反比例函數(shù)圖象于點C3,且A3C3=A3M,△A3C3B的面積記為S3;以此類推…;則S1+S2+S3+…+S8= _________ 

 

【答案】

【解析】

試題分析:根據(jù)點M是反比例函數(shù)y=在第一象限內(nèi)圖象上的點,即可得出=OB×MB=,再利用C1到BM的距離為A1到BM的距離的一半,得出S1===,同理即可得出S2===,S3=,S4=…,進而求出S1+S2+S3+…+S8的值即可.

過點M作MD⊥y軸于點D,過點A1作A1E⊥BM于點E,過點C1作C1F⊥BM于點F,

∵點M是反比例函數(shù)y=在第一象限內(nèi)圖象上的點,

∴OB×BM=1,

=OB×MB=,

∵A1C1=A1M,即C1為A1M中點,

∴C1到BM的距離C1F為A1到BM的距離A1E的一半,

∴S1===,

=BM?A2到BM距離=×BM×BO=

∵A2C2=A2M,

∴C2到BM的距離為A2到BM的距離的

∴S2===,

同理可得:S3=,S4=

++…++,=++…++=.

考點:反比例函數(shù)的綜合應用,三角形面積關(guān)系

點評:根據(jù)同底三角形對應高的關(guān)系得出面積關(guān)系是解題關(guān)鍵.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點P(3a,a)是反比例函y=
kx
(k>0)與⊙O的一個交點,圖中陰影部分的面積為10π,則反比例函數(shù)的解析式為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,點D在反比例函y=
k
x
(k>0)
的圖象上,△ODC是以CO為斜邊的等腰直角三角形,且C (4,0).
(1)求k的值;
(2)將線段DC平移至線段D1C1,D1在x軸的負半軸上,C1在雙曲線y=
k
x
上,求點D1的坐標;
(3)如圖2,雙曲線y=
k
x
 的圖象上有兩個動點A(a,m),B(3a,b),(a>0),求S△OAB的值.

查看答案和解析>>

科目:初中數(shù)學 來源:肇慶一模 題型:填空題

如圖,點P(3a,a)是反比例函y=
k
x
(k>0)與⊙O的一個交點,圖中陰影部分的面積為10π,則反比例函數(shù)的解析式為______.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年湖北省枝江市初三下學期第一次單元測試數(shù)學卷 題型:選擇題

如圖,點P(3a,a)是反比例函y=(k>0)與⊙O的一個交點,圖中陰影部分的面積為10π,則反比例函數(shù)的解析式為(      )

A.y=         B.y=        C.y=        D.y=

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆湖北省枝江市初一上學期第一次單元檢測數(shù)學卷 題型:選擇題

如圖,點P(3a,a)是反比例函y=(k>0)與⊙O的一個交點,圖中陰影部分的面積為10π,則反比例函數(shù)的解析式為(      )

A.y=         B.y=        C.y=        D.y=

 

查看答案和解析>>

同步練習冊答案