【題目】閱讀下面材料并解決有關(guān)問(wèn)題:

我們知道:|x|=.現(xiàn)在我們可以用這一結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的代數(shù)式,現(xiàn)在我們可以用這一結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的代數(shù)式,如化簡(jiǎn)代數(shù)式|x+1|+|x2|時(shí),可令x+1=0x2=0,分別求得x=1x=2(稱﹣1,2分別為|x+1||x2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=1和,x=2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:

①x﹣1②﹣1≤x2;③x≥2

從而化簡(jiǎn)代數(shù)式|x+1|+|x﹣2|可分以下3種情況:

當(dāng)x﹣1時(shí),原式=﹣x+1x﹣2=﹣2x+1;

當(dāng)﹣1≤x2時(shí),原式=x+1﹣x﹣2=3

當(dāng)x≥2時(shí),原式=x+1+x2=2x1.綜上討論,原式=

通過(guò)以上閱讀,請(qǐng)你解決以下問(wèn)題:

1)化簡(jiǎn)代數(shù)式|x+2|+|x﹣4|

2)求|x﹣1|﹣4|x+1|的最大值.

【答案】1)當(dāng)x﹣2時(shí),﹣2x+2;當(dāng)﹣2≤x4時(shí), 6;當(dāng)x≥4時(shí),2x﹣2;(22

【解析】試題分析:1)分為x<-2、-2≤x<4、x≥4三種情況化簡(jiǎn)即可;

2)分x<-1、-1≤x≤1、x>1分別化簡(jiǎn),結(jié)合x的取值范圍確定代數(shù)式值的范圍,從而求出代數(shù)式的最大值.

解:1)當(dāng)x﹣2時(shí),|x+2|+|x﹣4|=﹣x﹣2+4﹣x=﹣2x+2;

當(dāng)﹣2≤x4時(shí),|x+2|+|x﹣4|=x+2+4﹣x=6

當(dāng)x≥4時(shí),|x+2|+|x﹣4|=x+2+x﹣4=2x﹣2;

2)當(dāng)x﹣1時(shí),原式=3x+52,

當(dāng)﹣1≤x≤1時(shí),原式=﹣5x﹣3,﹣8≤﹣5x﹣3≤2,

當(dāng)x1時(shí),原式=﹣3x﹣5﹣8,

|x﹣1|﹣4|x+1|的最大值為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=AC,AB的垂直平分線交AC于點(diǎn)N,交BC的延長(zhǎng)線于點(diǎn)M,A=40°.

(1)求∠NMB的大小.

(2)如果將(1)中的∠A的度數(shù)改為70°,其余條件不變,再求∠NMB的大小.

(3)你認(rèn)為存在什么樣的規(guī)律?試用一句話說(shuō)明.(請(qǐng)同學(xué)們自己畫(huà)圖)

(4)將(1)中的∠A改為鈍角,對(duì)這個(gè)問(wèn)題規(guī)律的認(rèn)識(shí)是否需要加以修改?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是一副創(chuàng)意卡通圓規(guī),圖2是其平面示意圖,OA是支撐臂,OB是旋轉(zhuǎn)臂,使用時(shí),以點(diǎn)A為支撐點(diǎn),鉛筆芯端點(diǎn)B可繞點(diǎn)A旋轉(zhuǎn)作出圓.已知OA=OB=10cm.
(1)當(dāng)∠AOB=20°時(shí),求所作圓的半徑;(結(jié)果精確到0.01cm)
(2)保持∠AOB=20°不變,在旋轉(zhuǎn)臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長(zhǎng)度.(結(jié)果精確到0.01cm) (參考數(shù)據(jù):sin10°≈0.174,cos10°≈0.985,sin20°≈0.342,cos20°≈0.940)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)小寧和婷婷在一起做拼圖游戲,他們用 、△△、=”構(gòu)思出了獨(dú)特而有意義的圖形并根據(jù)圖形還用簡(jiǎn)潔的語(yǔ)言進(jìn)行了表述:

觀察以上圖案

1)這個(gè)圖案有什么特點(diǎn)?

2)它可以通過(guò)一個(gè)基本圖案經(jīng)過(guò)怎樣的平移而形成?

3)在平移的過(guò)程中,基本圖案的大小、形狀、位置是否發(fā)生了變化?你能解釋其中的道理嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是以BC為底的等腰三角形,AD是邊BC上的高,點(diǎn)E、F分別是AB、AC的中點(diǎn).

1)求證:四邊形AEDF是菱形;

2)如果四邊形AEDF的周長(zhǎng)為12,兩條對(duì)角線的和等于7,求四邊形AEDF的面積S

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)畫(huà)出數(shù)軸,并在數(shù)軸上畫(huà)出表示下列各數(shù)的點(diǎn):﹣4.5,﹣2,3,0,4;

(2)用號(hào)將(1)中各數(shù)連接起來(lái);

(3)直接填空:數(shù)軸上表示3和表示1的兩點(diǎn)之間的距離是_____,數(shù)軸上A點(diǎn)表示的數(shù)為4,B點(diǎn)表示的數(shù)為﹣2,則A、B之間的距離是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩支清雪隊(duì)同時(shí)開(kāi)始清理某路段積雪,一段時(shí)間后,乙隊(duì)被調(diào)往別處,甲隊(duì)又用了3小時(shí)完成了剩余的清雪任務(wù),已知甲隊(duì)每小時(shí)的清雪量保持不變,乙隊(duì)每小時(shí)清雪50噸,甲、乙兩隊(duì)在此路段的清雪總量y(噸)與清雪時(shí)間x(時(shí))之間的函數(shù)圖象如圖所示.
(1)乙隊(duì)調(diào)離時(shí),甲、乙兩隊(duì)已完成的清雪總量為噸;
(2)求此次任務(wù)的清雪總量m;
(3)求乙隊(duì)調(diào)離后y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,它表示甲乙兩人從同一個(gè)地點(diǎn)出發(fā)后的情況根據(jù)圖像判斷下列說(shuō)法錯(cuò)誤的是()

A. 甲是 8 點(diǎn)出發(fā)的

B. 乙是 9 點(diǎn)出發(fā)的,到 10 點(diǎn)時(shí),他大約走了 10 千米

C. 10 點(diǎn)為止乙的速度快

D. 兩人在 12 點(diǎn)再次相遇

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上, 老師要求同學(xué)們利用三角板畫(huà)兩條平行線.老師說(shuō)苗苗和小華兩位同學(xué)畫(huà)法都是正確的,兩位同學(xué)的畫(huà)法如下:

苗苗的畫(huà)法:

①將含30°角的三角尺的最長(zhǎng)邊與直線a重合,另一塊三角尺最長(zhǎng)邊與含30°角的三角尺的最短邊緊貼;

②將含30°角的三角尺沿貼合邊平移一段距離,畫(huà)出最長(zhǎng)邊所在直線b,則b//a.

小華的畫(huà)法:

①將含30°角三角尺的最長(zhǎng)邊與直線a重合,用虛線做出一條最短邊所在直線;

②再次將含30°角三角尺的最短邊與虛線重合,畫(huà)出最長(zhǎng)邊所在直線b,則b//a.

請(qǐng)?jiān)诿缑绾托∪A兩位同學(xué)畫(huà)平行線的方法中選出你喜歡的一種,并寫(xiě)出這種畫(huà)圖的依據(jù).

答:我喜歡__________同學(xué)的畫(huà)法,畫(huà)圖的依據(jù)是__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案