(2010•東營)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標軸交于點A(-1,0)和點B(0,-5).
(1)求該二次函數(shù)的解析式;
(2)已知該函數(shù)圖象的對稱軸上存在一點P,使得△ABP的周長最。埱蟪鳇cP的坐標.

【答案】分析:(1)將A、B的坐標代入拋物線的解析式中,即可求得待定系數(shù)的值;
(2)設拋物線與x軸的另一交點為C,根據(jù)(1)所得的函數(shù)解析式即可求得A、B、C的坐標;在△ABP中,AB的長為定值,若三角形的周長最小,那么AP+BP的長最小;由于A、C關于拋物線的對稱軸對稱,若連接BC,那么BC與對稱軸的交點即為所求的P點,可先求出直線BC的解析式,然后聯(lián)立拋物線的對稱軸方程,即可求得P點的坐標.
解答:解:(1)根據(jù)題意,得(2分)
解得(3分)
∴二次函數(shù)的表達式為y=x2-4x-5.(4分)

(2)令y=0,得二次函數(shù)y=x2-4x-5的圖象與x軸
的另一個交點坐標C(5,0);(5分)
由于P是對稱軸x=2上一點,
連接AB,由于
要使△ABP的周長最小,只要PA+PB最;(6分)
由于點A與點C關于對稱軸x=2對稱,連接BC交對稱軸于點P,則PA+PB=BP+PC=BC,根據(jù)兩點之間,線段最短,可得PA+PB的最小值為BC;
因而BC與對稱軸x=2的交點P就是所求的點;(8分)
設直線BC的解析式為y=kx+b,
根據(jù)題意可得
解得
所以直線BC的解析式為y=x-5;(9分)
因此直線BC與對稱軸x=2的交點坐標是方程組的解,
解得
所求的點P的坐標為(2,-3).(10分)
點評:此題主要考查了二次函數(shù)解析式的確定以及軸對稱性質的應用,能夠正確的確定P點的位置時解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2010•東營)如圖,AB是⊙O的直徑,點D在AB的延長線上,點C在⊙O上,CA=CD,∠CDA=30°.
(1)判斷直線CD與⊙O的位置關系為
相切
相切
;
(2)若⊙O的半徑為5,則點A到CD所在直線的距離為
7.5
7.5

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•東營)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標軸交于點A(-1,0)和點B(0,-5).
(1)求該二次函數(shù)的解析式;
(2)已知該函數(shù)圖象的對稱軸上存在一點P,使得△ABP的周長最。埱蟪鳇cP的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省東營市中考數(shù)學試卷(解析版) 題型:解答題

(2010•東營)如圖所示的矩形包書紙中,虛線是折痕,陰影是裁剪掉的部分,四個角均為大小相同的正方形,正方形的邊長為折疊進去的寬度.
(1)設課本的長為acm,寬為bcm,厚為ccm,如果按如圖所示的包書方式,將封面和封底各折進去3cm,用含a,b,c的代數(shù)式,分別表示滿足要求的矩形包書紙的長與寬;
(2)現(xiàn)有一本長為19cm,寬為16cm,厚為6cm的字典,你能用一張長為43cm,寬為26cm的矩形紙,按圖所示的方法包好這本字典,并使折疊進去的寬度不小于3cm嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省東營市中考數(shù)學試卷(解析版) 題型:選擇題

(2010•東營)如圖,點C是線段AB上的一個動點,△ACD和△BCE是在AB同側的兩個等邊三角形,DM,EN分別是△ACD和△BCE的高,點C在線段AB上沿著從點A向點B的方向移動(不與點A,B重合),連接DE,得到四邊形DMNE.這個四邊形的面積變化情況為( )

A.逐漸增大
B.逐漸減小
C.始終不變
D.先增大后變小

查看答案和解析>>

同步練習冊答案