精英家教網 > 初中數學 > 題目詳情
(2010•保定二模)如圖,菱形OABC的頂點O在坐標原點,頂點B在x軸的正半軸上,OA邊在直線上,AB邊在直線上.
(1)直接寫出O、A、B、C的坐標;
(2)在OB上有一動點P,以O為圓心,OP為半徑畫弧MN,分別交邊OA、OC于M、N(M、N可以與A、C重合),作⊙Q與邊AB、BC,弧MN都相切,⊙Q分別與邊AB、BC相切于點D、E,設⊙Q的半徑為r,OP的長為y,求y與r之間的函數關系式,并寫出自變量r的取值范圍;
(3)以O為圓心、OA為半徑做扇形OAC,請問在菱形OABC中,除去扇形OAC后剩余部分內,是否可以截下一個圓,使得它與扇形OAC剛好圍成一個圓錐.若可以,求出這個圓的面積,若不可以,說明理由.

【答案】分析:(1)因為菱形OABC的頂點O在坐標原點,頂點B在x軸的正半軸上,OA邊在直線上,AB邊在直線上,所以O(0,0),A是兩直線的交點.將兩直線的解析式聯立,得到方程組,解之即可得到A的坐標,利用菱形的對稱性即可得到B,C點的坐標.
(2)因為⊙Q分別與邊AB、BC相切于點D、E,所以可連接QD、QE,則QD⊥AB,QE⊥BC且QD=QE,從而判斷點Q在∠ABC的平分線上.利用菱形的對角線平分一組內對角可知點Q在OB上,又因⊙Q與弧MN相切于點P,而在Rt△QDB中,∠QBD=30°,所以QB=2QD=2r,即,整理即可得到所要求的解析式.
(3)因為以O為圓心、OA為半徑做扇形OAC,則弧AC的長為,設截下的⊙Q符合條件,其半徑為R,則,所以,由(2)知,此時OA=y=2,則⊙Q的半徑大于R,能截下一個圓,使得它與扇形OAC剛好圍成一個圓錐,從而求此圓的面積.
解答:解:(1)O(0,0),,,C(,-1);(2分)

(2)連接QD、QE,則QD⊥AB,QE⊥BC.
∵QD=QE,
∴點Q在∠ABC的平分線上.
又∵OABC是菱形,
∴點Q在OB上.
∴⊙Q與弧MN相切于點P.
在Rt△QDB中,∠QBD=30°,
∴QB=2QD=2r.
,

∵y>0,
∴2-3r>0,
∴r<,
∵A(,1)
∴AO=2,
∴2-3r≤2,
解得:≤r,


(3)可以.
理由:弧AC的長為
設截下的⊙Q符合條件,其半徑為R,則

由(2)知,此時OA=y=2,則⊙Q的半徑R=
∴能截下一個圓,使得它與扇形OAC剛好圍成一個圓錐,
此圓的面積為
點評:本題需仔細分析題意,結合圖形,利用菱形的性質、切線的性質即可解決問題.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年中考數學十校聯考模擬試卷(解析版) 題型:解答題

(2010•保定二模)如圖,菱形OABC的頂點O在坐標原點,頂點B在x軸的正半軸上,OA邊在直線上,AB邊在直線上.
(1)直接寫出O、A、B、C的坐標;
(2)在OB上有一動點P,以O為圓心,OP為半徑畫弧MN,分別交邊OA、OC于M、N(M、N可以與A、C重合),作⊙Q與邊AB、BC,弧MN都相切,⊙Q分別與邊AB、BC相切于點D、E,設⊙Q的半徑為r,OP的長為y,求y與r之間的函數關系式,并寫出自變量r的取值范圍;
(3)以O為圓心、OA為半徑做扇形OAC,請問在菱形OABC中,除去扇形OAC后剩余部分內,是否可以截下一個圓,使得它與扇形OAC剛好圍成一個圓錐.若可以,求出這個圓的面積,若不可以,說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年四川省宜賓市橫江片區(qū)春季期半期檢測數學試卷(解析版) 題型:解答題

(2010•保定二模)一輛經營長途運輸的貨車在高速公路的A處加滿油后勻速行駛,下表記錄的是貨車一次加滿油后油箱內余油量y(升)與行駛時間x(時)之間的關系:
行駛時間 (時)122.5
余油量 (升)100806050
(1)請你認真分析上表中所給的數據,用你學過的一次函數、反比例函數和二次函數中的一種來表示y與x之間的變化規(guī)律,說明選擇這種函數的理由,并求出它的函數表達式;(不要求寫出自變量的取值范圍)
(2)按照(1)中的變化規(guī)律,貨車從A處出發(fā)行駛4.2小時到達B處,求此時油箱內余油多少升?

查看答案和解析>>

科目:初中數學 來源:2010年北京市朝陽區(qū)中考數學模擬試卷(解析版) 題型:解答題

(2010•保定二模)已知二次函數y=ax2+4ax+4a-1的圖象是C1
(1)求C1關于點R(1,0)中心對稱的圖象C2的函數解析式;
(2)在(1)的條件下,設拋物線C1、C2與y軸的交點分別為A、B,當AB=18時,求a的值.

查看答案和解析>>

科目:初中數學 來源:2009年北京市宣武區(qū)中考數學二模試卷(解析版) 題型:解答題

(2010•保定二模)如圖,菱形OABC的頂點O在坐標原點,頂點B在x軸的正半軸上,OA邊在直線上,AB邊在直線上.
(1)直接寫出O、A、B、C的坐標;
(2)在OB上有一動點P,以O為圓心,OP為半徑畫弧MN,分別交邊OA、OC于M、N(M、N可以與A、C重合),作⊙Q與邊AB、BC,弧MN都相切,⊙Q分別與邊AB、BC相切于點D、E,設⊙Q的半徑為r,OP的長為y,求y與r之間的函數關系式,并寫出自變量r的取值范圍;
(3)以O為圓心、OA為半徑做扇形OAC,請問在菱形OABC中,除去扇形OAC后剩余部分內,是否可以截下一個圓,使得它與扇形OAC剛好圍成一個圓錐.若可以,求出這個圓的面積,若不可以,說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年北京市宣武區(qū)中考數學二模試卷(解析版) 題型:解答題

(2010•保定二模)已知二次函數y=ax2+4ax+4a-1的圖象是C1
(1)求C1關于點R(1,0)中心對稱的圖象C2的函數解析式;
(2)在(1)的條件下,設拋物線C1、C2與y軸的交點分別為A、B,當AB=18時,求a的值.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹