如圖,已知矩形ABCD的邊長AB=2,BC=3,點P是AD邊上的一動點(P異于A、D),Q是BC邊上的任意一點. 連AQ、DQ,過P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.
(1)求證:△APE∽△ADQ;
(2)設(shè)AP的長為x,試求△PEF的面積S△PEF關(guān)于x的函數(shù)關(guān)系式,并求當(dāng)P在何處時,S△PEF取得最大值?最大值為多少?
(3)當(dāng)Q在何處時,△ADQ的周長最小?(須給出確定Q在何處的過程或方法,不必給出證明)
(1)證∠APE=∠ADQ,∠AEP=∠AQD.
(2)注意到△APE∽△ADQ與△PDE∽△ADQ,及S△PEF=,
得S△PEF==. ∴當(dāng),即P是AD的中點時,S△PEF取得最大值.
(3)作A關(guān)于直線BC的對稱點A′,連DA′交BC于Q,則這個點Q就是使△ADQ周長最小的點,此時Q是BC的中點.
【解析】(1)證得∠APE=∠ADQ,∠AEP=∠AQD,即可得到△APE∽△ADQ;
(2)先由△APE∽△ADQ與△PDE∽△ADQ,及S△PEF=,
得S△PEF==,根據(jù)二次函數(shù)的性質(zhì)即可結(jié)果;
(3)作A關(guān)于直線BC的對稱點A′,連DA′交BC于Q,則這個點Q就是使△ADQ周長最小的點,此時Q是BC的中點.
科目:初中數(shù)學(xué) 來源: 題型:
45 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 |
2 |
9 |
8 |
4 |
9 |
4 |
9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com