【題目】如圖, 在中,,,,為邊上一個動點,于點,上于點,為的中點,則的最小值是( )
A.B.
C.D.
【答案】A
【解析】
根據勾股定理的逆定理可以證明∠BAC=90°;根據直角三角形斜邊上的中線等于斜邊的一半,則AM=EF,要求AM的最小值,即求EF的最小值;根據三個角都是直角的四邊形是矩形,得四邊形AEPF是矩形,根據矩形的對角線相等,得EF=AP,則EF的最小值即為AP的最小值,根據垂線段最短,知:AP的最小值即等于直角三角形ABC斜邊上的高.
∵在△ABC中,AB=3,AC=4,BC=5,
∴AB2+AC2=BC2,
即∠BAC=90°.
又∵PE⊥AB于E,PF⊥AC于F,
∴四邊形AEPF是矩形,
∴EF=AP.
∵M是EF的中點,
∴AM=EF=AP.
因為AP的最小值即為直角三角形ABC斜邊上的高,即等于 ,
∴AM的最小值是
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩家超市以相同的價格出售同樣的商品,為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計購買商品超出300元之后,超出部分按原價8折優(yōu)惠;在乙超市累計購買商品超出200元之后,超出部分按原價8.5折優(yōu)惠.設顧客預計累計購物元().
(1)請用含的代數(shù)式分別表示顧客在兩家超市購物所付的費用;
(2)李明準備購買500元的商品,你認為他應該去哪家超市?請說明理由;
(3)計算一下,李明購買多少元的商品時,到兩家超市購物所付的費用一樣?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.
(1)如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;
(2)如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C在線段AB上,AC=8 cm,CB=6 cm,點M、N分別是AC、BC的中點.
(1)求線段MN的長;
(2)若C為線段AB上任一點,滿足AC+CB=a cm,其它條件不變,你能猜想MN的長度嗎?并說明理由;
(3)若C在線段AB的延長線上,且滿足AC﹣BC=bcm,M、N分別為AC、BC的中點,你能猜想MN的長度嗎?請畫出圖形,寫出你的結論,并說明理由;
(4)你能用一句簡潔的話,描述你發(fā)現(xiàn)的結論嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)△ABC中,H是高AD和BE的交點,且AD=BD.
(1)請你猜想BH和AC的關系,并說明理由;
(2)若將圖(1)中的∠A改成鈍角,請你在圖(2)中畫出該題的圖形,此時(1)中的結論還成立嗎?(不必證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從2018年高中一年級學生開始,湖南省全面啟動高考綜合改革,學生學習完必修課程后,可以根據高校相關專業(yè)的選課要求和自身興趣、志向、優(yōu)勢,從思想政治、歷史、地理、物理、化學、生物6個科目中,自主選擇3個科目參加等級考試.學生已選物理,還想從思想政治、歷史、地理3個文科科目中選1科,再從化學、生物2個理科科目中選1科.若他選思想政治、歷史、地理的可能性相等,選化學、生物的可能性相等,則選修地理和生物的概率為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為線段上一動點(不與、重合),在同側分別作等邊和等邊,與交于點,與交于點,與交于點,連接,以下五個結論:①;②;③;④;⑤,恒成立的結論有( )
A.①③⑤B.①③④⑤C.①②③⑤D.①②③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)閱讀理解:如圖①,在四邊形ABCD中,AB∥DC,E是BC的中點,若AE是∠BAD的平分線,試判斷AB,AD,DC之間的等量關系.
解決此問題可以用如下方法:延長AE交DC的延長線于點F,易證△AEB≌△FEC,得到AB=FC,從而把AB,AD,DC轉化在一個三角形中即可判斷.
AB、AD、DC之間的等量關系為 ;
(2)問題探究:如圖②,在四邊形ABCD中,AB∥DC,AF與DC的延長線交于點F,E是BC的中點,若AE是∠BAF的平分線,試探究AB,AF,CF之間的等量關系,并證明你的結論.
(3)問題解決:如圖③,AB∥CF,AE與BC交于點E,BE:EC=2:3,點D在線段AE上,且∠EDF=∠BAE,試判斷AB、DF、CF之間的數(shù)量關系,并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com