【題目】在新的教學(xué)改革的推動下,某中學(xué)初三年級積極推進(jìn)走班制教學(xué).為了了解一段時間以來“至善班”的學(xué)習(xí)效果,年級組織了多次定時測試,現(xiàn)隨機(jī)選取甲、乙兩個“至善班”,從中各抽取20名同學(xué)在某一次定時測試中的數(shù)學(xué)成績,其結(jié)果記錄如下:
收集數(shù)據(jù):
“至善班”甲班的20名同學(xué)的數(shù)學(xué)成績統(tǒng)計(滿分為100分)(單位:分):86 90 60 76 92 83 56 76 85 70 96 96 90 68 78 80 68 96 85 81
“至善班”乙班的20名同學(xué)的數(shù)學(xué)成績統(tǒng)計(滿分為100分)(單位:分):78 96 75 76 82 87 60 54 87 72 100 82 78 86 70 92 76 80 98 78
整理數(shù)據(jù):(成績得分用x表示)
分?jǐn)?shù) 數(shù)量 班級 | 0≤x<60 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x<100 |
甲班(人數(shù)) | 1 | 3 | 4 | 6 | 6 |
乙班(人數(shù)) | 1 | 1 | 8 | 6 | 4 |
分析數(shù)據(jù),并回答下列問題:
(1)完成下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | |
甲班 | 80.6 | 82 | a= |
乙班 | 80.35 | b= | 78 |
(2)在“至善班”甲班的扇形圖中,成績在70≤x<80的扇形中,所對的圓心角α的度數(shù)為 ,估計全部“至善班”的1600人中優(yōu)秀人數(shù)為 人.(成績大于等于80分為優(yōu)秀)
(3)根據(jù)以上數(shù)據(jù),你認(rèn)為“至善班” 班(填“甲”或“乙”)所選取做樣本的同學(xué)的學(xué)習(xí)效果更好一些,你所做判斷的理由是:① ;② .
【答案】(1)96,79;(2)72°,880;(3)甲,甲的優(yōu)秀率高,甲的中位數(shù)比乙的中位數(shù)大
【解析】
(1)根據(jù)眾數(shù),中位數(shù)的定義即可解決問題;
(2)根據(jù)圓心角=360°×百分比計算即可,利用樣本估計總體的思想解決問題;
(3)根據(jù)優(yōu)秀率,中位數(shù),平均數(shù)的大小即可判斷。答案不唯一,合理即可.
解:(1)將甲班成績重新整理如下:
56 60 68 68 70 76 76 78 80 81 83 85 85 86 90 90 92 96 96 96,
其中96出現(xiàn)次數(shù)做多,
∴眾數(shù)a=96(分),
將乙班成績重新整理如下:
54 60 70 72 75 76 76 78 78 78 80 82 82 86 87 87 92 96 98 100,
其中中位數(shù)b79(分),
故答案為:96,79;
(2)成績在70≤x<80的扇形中,所對的圓心角α的度數(shù)為360°72°,
估計全部“至善班”的1600人中優(yōu)秀人數(shù)為1600880(人).
(3)甲所選取做樣本的同學(xué)的學(xué)習(xí)效果更好一些,你所做判斷的理由是:甲的優(yōu)秀率高,甲的中位數(shù)比乙的中位數(shù)大,
故答案為:甲,甲的優(yōu)秀率高,甲的中位數(shù)比乙的中位數(shù)大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn),分別是的邊、延長線上的點(diǎn),的延長線交于.
(1)如圖1,,,求證:;
(2)如圖2,,,,,求;
(3)如圖3,若,,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖、圖分別是的網(wǎng)格,網(wǎng)格中的每個小正方形的邊長均為1,點(diǎn)、、、在小正方形的頂點(diǎn)上.請在網(wǎng)格中按要求畫出圖形:
(1)在圖中畫以為斜邊的直角三角形(點(diǎn)在小正方形的頂點(diǎn)上),使得;
(2)在圖中畫以為邊的四邊形(點(diǎn)、在小正方形的頂點(diǎn)上),使得四邊形是中心對稱圖形但不是軸對稱圖形,且,并直接寫出四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中建立直角坐標(biāo)系,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)O為原點(diǎn),點(diǎn)A、B的坐標(biāo)分別是A(3,2)、B(1,3).
(1)將△AOB向下平移3個單位后得到△A1O1B1,則點(diǎn)B1的坐標(biāo)為 ;
(2)將△AOB繞點(diǎn)O逆時針旋轉(zhuǎn)90°后得到△A2OB2,請在圖中作出△A2OB2,并求出這時點(diǎn)A2的坐標(biāo)為 ;
(3)在(2)中的旋轉(zhuǎn)過程中,線段OA掃過的圖形的面積 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了方便學(xué)生在上下學(xué)期間安全過馬路,南岸區(qū)政府決定在南開(融僑)中學(xué)校門口修建人行天橋(如圖1),其平面圖如圖2所示,初三(8)班的學(xué)生小劉想利用所學(xué)知識測量天橋頂棚距地面的高度.天橋入口A點(diǎn)有一臺階AB=2m,其坡角為30°,在AB上方有兩段平層BC=DE=1.5m,且BC,DE與地面平行,BC,DE上方又緊接臺階CD,EF,其長度相等且坡度均為i=4:3,頂棚距天橋距離FG=2m,且小劉從入口A點(diǎn)測得頂棚頂端G的仰角為37°,請根據(jù)以上數(shù)據(jù),幫小劉計算出頂端G點(diǎn)距地面高度為( )m.(結(jié)果保留一位小數(shù),參考數(shù)據(jù):≈1.73,sin37°≈,cos37°≈,tan37°≈)
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在開展“經(jīng)典閱讀”活動中,某學(xué)校為了解全校學(xué)生利用課外時間閱讀的情況,學(xué)校團(tuán)委隨機(jī)抽取若干名學(xué)生,調(diào)查他們一周的課外閱讀時間,并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計表.根據(jù)圖表信息,解答下列問題:
頻率分布表
閱讀時間(小時) | 頻數(shù)(人) | 頻率 |
6 | 0.12 | |
0.24 | ||
15 | 0.3 | |
12 | ||
5 | 0.1 | |
合計 | 1 |
(1)求__________,_________;
(2)將頻數(shù)分布直方圖補(bǔ)充完整(畫圖后請標(biāo)注相應(yīng)的頻數(shù));
(3)在范圍內(nèi)的5名同學(xué)中恰好有2名男生和3名女生,現(xiàn)從中隨機(jī)挑選2名同學(xué)代表學(xué)校參加全市經(jīng)典閱讀比賽,請用樹狀圖法或者列表法求出恰好選中“1男1女”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠B=120°,AB與CD之間的距離是,AB=28,在AB上取一點(diǎn)E(AE<BE),使得∠DEC=120°,則AE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上的一個動點(diǎn)(不與點(diǎn)A重合),延長ME交CD的延長線于點(diǎn)N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形.
(2)當(dāng)AM的值為何值時,四邊形AMDN是矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著《流浪地球》的熱播,其同名科幻小說的銷量也急劇上升.為應(yīng)對這種變化,某網(wǎng)店分別花20000元和30000元先后兩次增購該小說,第二次的數(shù)量比第一次多500套,且兩次進(jìn)價相同.
(1)該科幻小說第一次購進(jìn)多少套?
(2)根據(jù)以往經(jīng)驗:當(dāng)銷售單價是25元時,每天的銷售量是250套;銷售單價每上漲1元,每天的銷售量就減少10套.網(wǎng)店要求每套書的利潤不低于10元且不高于18元.
①直接寫出網(wǎng)店銷售該科幻小說每天的銷售量y(套)與銷售單價x(元)之間的函數(shù)關(guān)系式及自變量x的取值范圍;
②網(wǎng)店決定每銷售1套該科幻小說,就捐贈a(0<a<7)元給困難職工,每天扣除捐贈后可獲得的最大利潤為1960元,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com