【題目】如圖,已知正方形DEFG的頂點(diǎn)D、E在△ABC的邊BC上,頂點(diǎn)G、F分別在邊AB、AC上,如果BC=5,ABC的面積是10,那么這個(gè)正方形的邊長(zhǎng)是_____

【答案】

【解析】

AH⊥BCH,交GFM,如圖,先利用三角形面積公式計(jì)算出AH=4,設(shè)正方形DEFG的邊長(zhǎng)為x,則GF=x,MH=x,AM=4-x,再證明△AGF∽△ABC,則根據(jù)相似三角形的性質(zhì)得方程,然后解關(guān)于x的方程即可.

解:如圖,作AH⊥BCH,交GFM,


∵△ABC的面積是10,

BCAH=10,
∴AH=4,
設(shè)正方形DEFG的邊長(zhǎng)為x,則GF=x,MH=x,AM=4-x,
∵GF∥BC,
∴△AGF∽△ABC,

,

,解得x= 。

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OC是∠AOB的平分線,點(diǎn)POC上且OP=4,∠AOB=60°,過點(diǎn)P的動(dòng)直線DEOAD,交OBE,那么=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊿ABC中,∠B = 50,∠C = 70,AD是高,AE是角平分線,

1∠BAC=__________∠DAC=__________.(填度數(shù))

2)求∠EAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等邊三角形,以BC為直徑的半圓O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.

(1)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;

(2)若AE=1,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是正ABC內(nèi)一點(diǎn),OA6,OB8,OC10,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO',下列結(jié)論:①△BO'A可以由BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)OO的距離為6;③∠AOB150°;④SBOC12+6 S四邊形AOBO24+12.其中正確的結(jié)論是_____.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)觀察猜想:

RtABC中,∠BAC=90°,AB=AC,點(diǎn)D在邊BC上,連接AD,把ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)D落在點(diǎn)E處,如圖①所示,則線段CE和線段BD的數(shù)量關(guān)系是   ,位置關(guān)系是   

(2)探究證明:

在(1)的條件下,若點(diǎn)D在線段BC的延長(zhǎng)線上,請(qǐng)判斷(1)中結(jié)論是還成立嗎?請(qǐng)?jiān)趫D②中畫出圖形,并證明你的判斷.

(3)拓展延伸:

如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點(diǎn)DDFADCE于點(diǎn)F,請(qǐng)直接寫出線段CF長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是線段AB上的一個(gè)點(diǎn),分別以AP,PB為邊在AB的同側(cè)作菱形APCD和菱形PBFE,點(diǎn)P,C,E在一條直線上,點(diǎn)MN分別是對(duì)角線AC,BE的中點(diǎn),連接MN,PM,PN,若∠DAP60°,AP2+3PB22,則線段MN的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=6,AC=8BC=10,P為邊BC上一動(dòng)點(diǎn)(且點(diǎn)P不與點(diǎn)B、C重合),PEABE,PFACFMEF中點(diǎn).設(shè)AM的長(zhǎng)為x,則x的取值范圍是(  )

A. 4≥x2.4 B. 4≥x≥2.4 C. 4x2.4 D. 4x≥2.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.如圖所示,已知△ABC和△BDE都是等邊三角形,下列結(jié)論:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等邊三角形;⑥FG∥AD,其中正確的有( )

A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案