將矩形紙片ABCD分別沿兩條不同的直線剪兩刀,使剪得的三塊紙片恰能拼成一個(gè)三角形(不能有重疊和縫隙).圖1中提供了一種剪拼成等腰三角形的示意圖.

(1)請(qǐng)?zhí)峁┝硪环N剪拼成等腰三角形方式,并在圖2中畫(huà)出示意圖;
(2)以點(diǎn)B為原點(diǎn),BC所在的直線為x軸建立平面直角坐標(biāo)系(如圖3),點(diǎn)D的坐標(biāo)(8,5).若剪拼后得到等腰三角形MNP,使M,N點(diǎn)在y軸上(M在點(diǎn)N上方),點(diǎn)P在邊CD上(不與C,D重合).設(shè)直線PM的解析式為y=kx+b(k≠0),則k的值為_(kāi)_____,b的取值范圍是______(不要求解題過(guò)程)
【答案】分析:(1)可直接沿AD,CD中點(diǎn),BC,CD中點(diǎn)剪開(kāi);
(2)△MNP是等腰三角形,分①PM=PN,②PM=MN,③PN=MN三種情況取AD、BC的中點(diǎn)E、F,沿PE、PF剪開(kāi),拼接成等腰三角形,然后求出相應(yīng)的k值與b的取值范圍(或b的值),即可得解.
解答:解:(1)如圖所示:

沿AD,CD中點(diǎn),BC,CD中點(diǎn)剪開(kāi),即可得到一個(gè)等腰三角形.

(2)

取AD、BC的中點(diǎn)E、F,
①如圖1,若PM=PN,把點(diǎn)P(8,)、M(0,)代入y=kx+b,求出k=-,
當(dāng)PM與AC重合時(shí),b=5,PN與BD重合時(shí),b=10,
所以,5<b<10,
②如圖2,若PM=MN,則PM=MN=10,
所以,EP=5,
∵ED=AD=×8=4,
∴DP==3,
∴CP=5-3=2,
∴點(diǎn)P(8,2),點(diǎn)M(0,8),
代入y=kx+b,求得k=-,b=8;
③如圖3,若PN=MN,則PN=MN=10,
所以,PF=5,
∵FC=BC=×8=4,
∴PC==3,
∴點(diǎn)P(8,3),點(diǎn)M(0,7),
代入y=kx+b,求得k=-,b=7;
綜上所述,k值為:-或-或-,b的取值范圍是5<b<10.
故答案為:-或-或-;5<b<10.
點(diǎn)評(píng):本題主要考查對(duì)于一次函數(shù)圖形的應(yīng)用以及等腰三角形的性質(zhì)的掌握,(2)第一種情況b是一個(gè)取值范圍,第二三兩種情況b是一個(gè)值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,將矩形紙片ABCD沿EF折疊(E、F分別是AD、BC上的點(diǎn)),使點(diǎn)B與四邊形CDEF內(nèi)一點(diǎn)B′重合,若∠B′FC=50°,則∠AEF等于(  )
A、110°B、115°C、120°D、130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題10分)如圖,將矩形紙片ABCD沿對(duì)角線AC折疊,使點(diǎn)B落到到B′的位置,AB′與CD交于點(diǎn)E.

(1)求證:△AED≌△CEB′

(2)若AB = 8,DE = 3,點(diǎn)P為線段AC上任意一點(diǎn),PG⊥AE于G,PH⊥BC于H.求PG + PH的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(滿分l0分)如圖,將矩形紙片ABCD沿對(duì)角線AC折疊,使點(diǎn)B落在點(diǎn)E處,求證:EF=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題10分)如圖,將矩形紙片ABCD沿對(duì)角線AC折疊,使點(diǎn)B落到到B′的位置,AB′與CD交于點(diǎn)E.
(1)求證:△AED≌△CEB′
(2)若AB = 8,DE = 3,點(diǎn)P為線段AC上任意一點(diǎn),PG⊥AE于G,PH⊥BC于H.求PG + PH的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年江蘇省洋思中學(xué)九年級(jí)月考數(shù)學(xué)卷 題型:解答題

( 本題滿分12分)
【小題1】(1)動(dòng)手操作:
如圖①,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)處,折痕為EF,若∠ABE=20°,那么的度數(shù)為        。

【小題2】(2)觀察發(fā)現(xiàn)小明將三角形紙片ABC(AB>AC)沿過(guò)點(diǎn)A的直線折疊,使得AC落在AB邊上,折痕為AD,展開(kāi)紙片(如圖②);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認(rèn)為△AEF是等腰三角形,你同意嗎?請(qǐng)說(shuō)明理由

(3)實(shí)踐與運(yùn)用:
將矩形紙片ABCD 按如下步驟操作:將紙片對(duì)折得折痕EF,折痕與AD邊交于點(diǎn)E,與BC邊交于點(diǎn)F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點(diǎn)A、點(diǎn)D都與點(diǎn)F重合,展開(kāi)紙片,此時(shí)恰好有MP=MN=PQ(如圖④),求∠MNF的大小。

查看答案和解析>>

同步練習(xí)冊(cè)答案