(2003•三明)已知:如圖,CD是Rt△ABC的斜邊AB上的高,且BC=a,AB=c,CD=h,AD=q,DB=p.求證:h2=p•q,a2=p•c.

【答案】分析:欲證:h2=p•q,可以證明Rt△ADC∽Rt△CDB得出,欲證a2=p•c,可以證明Rt△CDB∽Rt△ACB得出.
解答:證明:Rt△ABC,CD⊥AB,
∴∠ADC=∠CDB=90°,∠ACD=90°,
∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,
∴∠BCD=∠A,
∴Rt△ADC∽Rt△CDB,
?,
∴h2=p•q;
同理可證Rt△CDB∽Rt△ACB,
得:a2=p•c.
點評:乘積的形式通?梢赞D(zhuǎn)化成比例的形式,通過相似三角形的性質(zhì)得出.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(2003•三明)已知y-1與x成正比例,且x=2時,y=5,寫出y與x之間的函數(shù)關(guān)系式;當x=-1時,求y的值;當y=0時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年福建省三明市中考數(shù)學試卷(解析版) 題型:解答題

(2003•三明)已知y-1與x成正比例,且x=2時,y=5,寫出y與x之間的函數(shù)關(guān)系式;當x=-1時,求y的值;當y=0時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圓》(12)(解析版) 題型:解答題

(2003•三明)已知:如圖,邊長為2的正五邊形ABCDE內(nèi)接于⊙O,AB、DC的延長線交于點F,過點E作EG∥CB交BA的延長線于點G.
(1)求證:AB2=AG•BF;
(2)證明:EG與⊙O相切,并求AG、BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《四邊形》(06)(解析版) 題型:解答題

(2003•三明)已知:如圖,線段AM∥DN,直線l與AM、DN分別交于點B、C,直線l繞BC的中點P旋轉(zhuǎn)(點C由D點向N點方向移動).
(1)線段BC與AD、AB、CD圍成的圖形,在初始狀態(tài)下,形狀是△ABD(即△ABC),請你寫出變化過程中其余的各種特殊四邊形名稱;
(2)任取變化過程中的兩個圖形,測量AB、CD長度后分別計算同一個圖形的AB+CD(精確到1cm),比較這兩個和是否相同,試加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《三角形》(08)(解析版) 題型:解答題

(2003•三明)已知:如圖,線段AM∥DN,直線l與AM、DN分別交于點B、C,直線l繞BC的中點P旋轉(zhuǎn)(點C由D點向N點方向移動).
(1)線段BC與AD、AB、CD圍成的圖形,在初始狀態(tài)下,形狀是△ABD(即△ABC),請你寫出變化過程中其余的各種特殊四邊形名稱;
(2)任取變化過程中的兩個圖形,測量AB、CD長度后分別計算同一個圖形的AB+CD(精確到1cm),比較這兩個和是否相同,試加以證明.

查看答案和解析>>

同步練習冊答案