【題目】如圖,AB為半圓O在直徑,AD、BC分別切O于A、B兩點(diǎn),CD切O于點(diǎn)E,連接OD、OC,下列結(jié)論:①DOC=90°,②AD+BC=CD,③SAOD:SBOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DECD,正確的有( )

A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)

【答案】C

【解析】

試題分析:連接OE,由AD,DC,BC都為圓的切線,根據(jù)切線的性質(zhì)得到三個(gè)角為直角,且利用切線長定理得到DE=DA,CE=CB,由CD=DE+EC,等量代換可得出CD=AD+BC,選項(xiàng)②正確;由AD=ED,OD為公共邊,利用HL可得出直角三角形ADO與直角三角形EDO全等,可得出AOD=EOD,同理得到EOC=BOC,而這四個(gè)角之和為平角,可得出DOC為直角,選項(xiàng)①正確;由DOCDEO都為直角,再由一對公共角相等,利用兩對對應(yīng)角相等的兩三角形相似,可得出三角形DEO與三角形DOC相似,由相似得比例可得出OD2=DECD,選項(xiàng)⑤正確;由AOD∽△BOC,可得===,選項(xiàng)③正確;由ODE∽△OEC,可得,選項(xiàng)④錯(cuò)誤.

解:連接OE,如圖所示:

AD與圓O相切,DC與圓O相切,BC與圓O相切,

∴∠DAO=DEO=OBC=90°,

DA=DE,CE=CB,ADBC,

CD=DE+EC=AD+BC,選項(xiàng)②正確;

在RtADO和RtEDO中,,

RtADORtEDO(HL),

∴∠AOD=EOD,

同理RtCEORtCBO

∴∠EOC=BOC,

AOD+DOE+EOC+COB=180°

2DOE+EOC)=180°,即DOC=90°,選項(xiàng)①正確;

∴∠DOC=DEO=90°,又EDO=ODC,

∴△EDO∽△ODC,

=,即OD2=DCDE,選項(xiàng)⑤正確;

∵∠AOD+COB=AOD+ADO=90°,

A=B=90°

∴△AOD∽△BOC,

===,選項(xiàng)③正確;

同理ODE∽△OEC

,選項(xiàng)④錯(cuò)誤;

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在對代數(shù)式2x2+axy+6(bx2+3x5y+1)化簡后,沒有含x的項(xiàng),請求出代數(shù)式(ab)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABCD,E是AB的中點(diǎn),CE=DE.

(1)求證:AED=BEC;

(2)連接AC、BD,求證:AC=BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用網(wǎng)格畫圖:

(1)過點(diǎn)C畫AB的平行線CD;

(2)過點(diǎn)C畫AB的垂線,垂足為E;

(3)線段CE的長度是點(diǎn)C到直線 的距離;

(4)連接CA、CB,在線段CA、CB、CE中,線段 最短,理由:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,a、b、c分別是AB、C的對邊,下列條件不能判斷ABC是直角三角形的是( )

A.A=CB

B.a(chǎn):b:c=2:3:4

C.a(chǎn)2=b2﹣c2

D.a(chǎn)=,b=,c=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班有48位同學(xué),在一次數(shù)學(xué)檢測中,分?jǐn)?shù)只取整數(shù),統(tǒng)計(jì)其成績,繪制出頻數(shù)分布直方圖(橫半軸表示分?jǐn)?shù),把50.5分到100.5分之間的分?jǐn)?shù)分成5組,組距是10分,縱半軸表示頻數(shù))如圖所示,從左到右的小矩形的高度比是1:3:6:4:2,則由圖可知,其中分?jǐn)?shù)在70.5~80.5之間的人數(shù)是( )

A.9 B.18 C.12 D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某糧店出售的三種品牌的面粉袋上,分別標(biāo)有質(zhì)量為(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字樣,從中任意拿出兩袋,它們的質(zhì)量最多相差 ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)n邊形的內(nèi)角和等于900°,那么n的值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

1)如果點(diǎn)A表示的數(shù)-1,將點(diǎn)A向右移動(dòng)4個(gè)單位長度,那么終點(diǎn)B表示的數(shù)是 ,AB兩點(diǎn)間的距離是

2)如果點(diǎn)A表示的數(shù)2,將點(diǎn)A向左移動(dòng)6個(gè)單位長度,再向右移動(dòng)3個(gè)單位長度,那么終點(diǎn)B表示的數(shù)是 ,AB兩點(diǎn)間的距離是

3)如果點(diǎn)A表示的數(shù)m,將點(diǎn)A向右移動(dòng)n個(gè)單位長度,再向左移動(dòng)p個(gè)單位長度,那么請你猜想終點(diǎn)B表示的數(shù)是 ,AB兩點(diǎn)間的距離是

查看答案和解析>>

同步練習(xí)冊答案