【題目】如圖,AB是⊙O的直徑,直線CD與⊙O相切于點(diǎn)C,且與AB的延長(zhǎng)線交于點(diǎn)E.點(diǎn)C是弧BF的中點(diǎn).
(1)求證:AD⊥CD;
(2)若∠CAD=30°.⊙O的半徑為3,一只螞蟻從點(diǎn)B出發(fā),沿著BE--EC--弧CB爬回至點(diǎn)B,求螞蟻爬過(guò)的路程(π≈3.14,≈1.73,結(jié)果保留一位小數(shù).)
【答案】(1)證明見(jiàn)解析;(2)11.3
【解析】
(1)連接OC,根據(jù)切線的性質(zhì)得到OC⊥CD,證明OC∥AD,根據(jù)平行線的性質(zhì)證明;
(2)根據(jù)圓周角定理得到∠COE=60°,根據(jù)勾股定理、弧長(zhǎng)公式計(jì)算即可.
(1)連接OC.
∵直線CD與⊙O相切,∴OC⊥CD.
∵點(diǎn)C是的中點(diǎn),∴∠DAC=∠EAC.
∵OA=OC,∴∠OCA=∠EAC,∴∠DAC=∠OCA,∴OC∥AD,∴AD⊥CD;
(2)∵∠CAD=30°,∴∠CAE=∠CAD=30°,由圓周角定理得:∠COE=60°,∴OE=2OC=6,EC=OC=3==π,∴螞蟻爬過(guò)的路程=3+3+π≈11.3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),直線l與拋物線交于A,C兩點(diǎn),其中點(diǎn)C的橫坐標(biāo)為2.
(1)求A,B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
(2)P是線段AC上的一個(gè)動(dòng)點(diǎn)(P與A,C不重合),過(guò)P點(diǎn)作y軸的平行線交拋物線于點(diǎn)E,求△ACE面積的最大值;
(3)若直線PE為拋物線的對(duì)稱軸,拋物線與y軸交于點(diǎn)D,直線AC與y軸交于點(diǎn)Q,點(diǎn)M為直線PE上一動(dòng)點(diǎn),則在x軸上是否存在一點(diǎn)N,使四邊形DMNQ的周長(zhǎng)最。咳舸嬖,求出這個(gè)最小值及點(diǎn)M,N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4)點(diǎn)H是拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、H四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整.
(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對(duì)應(yīng)值列表:
x | … | ﹣3 | - | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中m= .
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請(qǐng)畫出該函數(shù)圖象的另一部分;
(3)觀察函數(shù)圖象,寫出2條函數(shù)的性質(zhì);
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有 個(gè)交點(diǎn),所對(duì)應(yīng)的方程x2﹣2|x|=0有
②方程x2﹣2|x|=2有 個(gè)實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,,是的平分線.若,分別是和上的動(dòng)點(diǎn),則的最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一條筆直的公路上有、、三地、兩地相距千米,甲、乙兩個(gè)野外徒步愛(ài)好小組從 、兩地同時(shí)出發(fā),沿公路始終勻速相向而行,分別走向、兩地.甲、乙兩組到地的距離,(千米)與行走時(shí)間(時(shí))的關(guān)系如圖所示.
(1)請(qǐng)?jiān)趫D中標(biāo)出地的位置,并寫出相應(yīng)的距離: ;
(2)在圖中求出甲組到達(dá)地的時(shí)間;
(3)求岀乙組從地到地行走過(guò)程中與行走時(shí)間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖16,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.
(1)求拋物線的解析式.
(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值.
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線(a≠0)與x軸交于A(﹣1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3),其頂點(diǎn)為點(diǎn)D,點(diǎn)E的坐標(biāo)為(0,﹣),該拋物線與BE交于另一點(diǎn)F,連接BC.
(1)求該拋物線的解析式,并用配方法把解析式化為的形式;
(2)動(dòng)點(diǎn)M從點(diǎn)D出發(fā),沿拋物線對(duì)稱軸方向向上以每秒1個(gè)單位的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t,連接OM,BM,當(dāng)t為何值時(shí),△OMB為等腰三角形?(3)在x軸上方的拋物線上,是否存在點(diǎn)P,使得∠PBF被BA平分?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com