【題目】如圖,在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點(diǎn)E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.求證:四邊形ABEF為菱形;

【答案】見詳解

【解析】

由尺規(guī)作∠BAF的角平分線的過程可得,AB=AF,∠BAE=FAE,根據(jù)平行四邊形的性質(zhì)可得∠FAE=AEB,然后證明AF=BE,進(jìn)而可得四邊形ABEF為平行四邊形,再由AB=AF可得四邊形ABEF為菱形;

證明:由尺規(guī)作∠BAF的角平分線的過程可得:AB=AF,∠BAE=FAE,

∵四邊形ABCD是平行四邊形,

ADBC,

∴∠FAE=AEB,

∴∠BAE=AEB

AB=BE,

BE=FA,

∴四邊形ABEF為平行四邊形,

AB=AF,

∴四邊形ABEF為菱形;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,點(diǎn)D是線段AC上的一動點(diǎn),EBC的延長線上,且BDDE

(1)如圖,若點(diǎn)D為線段AC的中點(diǎn),求證:ADCE;

(2)如圖,若點(diǎn)D為線段AC上任意一點(diǎn),求證:ADCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】4張相同的卡片上分別寫有數(shù)字2,3,4,5將卡片的背面向上,洗勻后從中任意抽取1 張,將卡片上的數(shù)字作為被減數(shù);一只不透明的袋子中裝有標(biāo)號2,3,43個(gè)小球,這些球除標(biāo)號外都相同,攪勻后從中任意摸出一個(gè)球,將摸到的球的標(biāo)號作為減數(shù).

(1)用樹狀圖或列表的方法求這兩個(gè)數(shù)的差為0的概率;

(2)如果游戲規(guī)則規(guī)定:當(dāng)抽到的這兩個(gè)數(shù)的差為非負(fù)數(shù)時(shí),則甲獲勝;否則,乙獲勝,你認(rèn)為這樣的規(guī)則公平嗎?如果不公平,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的平分線于點(diǎn),,交的延長線于點(diǎn),若,則_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,在等腰直角中,,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,則的面積為_______

(2)如圖,在直角 中,,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,連接,求的面積,并說明理由.(用含的式子表示)

(3)如圖,在等腰中,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,連接,若,則 的面積為 (用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9分)如圖,已知點(diǎn)B、E、C、F在同一直線上,AB=DE,∠A=∠D,AC∥DF

求證:(1△ABC≌△DEF; (2BE=CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C90°,∠CAD=∠BAD,DEABE,點(diǎn)F在邊AC上,連接DF

1)求證:ACAE;

2)若CFBE,直接寫出線段AB,AFEB的數(shù)量關(guān)系:   

3)若AC8,AB10,且ABC的面積等于24,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出定義,若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱該四邊形為勾股四邊形.

1)在你學(xué)過的特殊四邊形中,寫出兩種勾股四邊形的名稱;

2)如圖,將△ABC繞頂點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)60°得到△DBE,連接AD,DC,CE,已知∠DCB=30°

求證:△BCE是等邊三角形;

求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠A36°,BD、CE分別是∠ABC、∠BCD的平分線,則圖中的等腰三角形有(  )

A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

同步練習(xí)冊答案