【題目】如圖,四張正面分別寫有1、2、3、4的不透明卡片,它們的背面完全相同,現(xiàn)把它們洗勻,背面朝上放置后,開始游戲游戲規(guī)則如下:

連摸三次,每次隨機(jī)摸出一張卡片,并翻開記下卡片上的數(shù)字,每次摸出后不放回,如果第三次摸出的卡片上的數(shù)字,正好介于第一、二次摸出的卡片上的數(shù)字之間,則游戲勝出,否則,游戲失敗問:

若已知小明第一次摸出的數(shù)字是4,第二次摸出的數(shù)字是2,在這種情況下,小明繼續(xù)游戲,可以獲勝的概率為______

若已知小明第一次摸出的數(shù)字是3,求在這種情況下,小明繼續(xù)游戲,可以獲勝的概率要求列表或用樹狀圖求

【答案】(1)(2)

【解析】

1)依據(jù)第三次摸出的卡片上的數(shù)字可能是13,其中摸到3能獲勝,即可得到小明繼續(xù)游戲可以獲勝的概率;

2)依據(jù)小明第一次摸出的數(shù)字是3,畫出樹狀圖,即可得到6種等可能的情況,其中第三次摸到的數(shù)介于前兩個(gè)數(shù)之間的只有一種情況,進(jìn)而得出小明獲勝的概率.

1)小明第一次摸出的數(shù)字是4,第二次摸出的數(shù)字是2,在這種情況下,小明繼續(xù)游戲,第三次摸出的卡片上的數(shù)字可能是13,其中摸到3能獲勝,∴可以獲勝的概率為

故答案為:;

2)畫樹狀圖如下:

共有6種等可能的情況,其中第三次摸到的數(shù)介于前兩個(gè)數(shù)之間的只有一種情況:(3,12),則P(小明能獲勝)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

我們知道,四邊形具有不穩(wěn)定性,容易變形,如圖1,一個(gè)矩形發(fā)生變形后成為一個(gè)平行四邊形,設(shè)這個(gè)平行四邊形相鄰兩個(gè)內(nèi)角中較小的一個(gè)內(nèi)角為α,我們把的值叫做這個(gè)平行四邊形的變形度.

1)若矩形發(fā)生變形后的平行四邊形有一個(gè)內(nèi)角是120度,則這個(gè)平行四邊形的變形是 

猜想證明:

2)設(shè)矩形的面積為S1,其變形后的平行四邊形面積為S2,試猜想S1S2 之間的數(shù)量關(guān)系,并說明理由;

拓展探究:

3)如圖2,在矩形ABCD中,EAD邊上的一點(diǎn),且AB2=AEAD,這個(gè)矩形發(fā)生變形后為平行四邊形A1B1C1D1E1E的對應(yīng)點(diǎn),連接B1E1,B1D1,若矩形ABCD的面積為4 m0),平行四邊形A1B1C1D1的面積為2m0),試求∠A1E1B1+A1D1B1的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于 A、B兩點(diǎn),與y軸交于點(diǎn)C,OB=OC.點(diǎn)D在函數(shù)圖象上,CDx軸,且CD=2,直線l是拋物線的對稱軸,E是拋物線的頂點(diǎn).

(1)求b、c的值;

(2)如圖①,連接BE,線段OC上的點(diǎn)F關(guān)于直線l的對稱點(diǎn)F'恰好在線段BE上,求點(diǎn)F的坐標(biāo);

(3)如圖②,動(dòng)點(diǎn)P在線段OB上,過點(diǎn)Px軸的垂線分別與BC交于點(diǎn)M,與拋物線交于點(diǎn)N.試問:拋物線上是否存在點(diǎn)Q,使得△PQN與△APM的面積相等,且線段NQ的長度最?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A1,3),與x軸的一個(gè)交點(diǎn)B4,0),直線y2=mx+nm≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:

①2a+b=0;②abc0;方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;拋物線與x軸的另一個(gè)交點(diǎn)是(﹣1,0);當(dāng)1x4時(shí),有y2y1

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題12分)如圖,拋物線軸正半軸于點(diǎn)A,頂點(diǎn)為M,對稱軸NB軸于點(diǎn)B,過點(diǎn)C2,0)作射線CDMB于點(diǎn)DD軸上方),OE∥CDMB于點(diǎn)EEF∥軸交CD于點(diǎn)F,作直線MF

1)求點(diǎn)A,M的坐標(biāo);

2)當(dāng)BD為何值時(shí),點(diǎn)F恰好落在拋物線上?

3)當(dāng)BD=1時(shí),、求直線MF的解析式,并判斷點(diǎn)A是否落在該直線上;

、延長OEFM于點(diǎn)G,取CF中點(diǎn)P,連結(jié)PG,△FPG,四邊形DEGP,四邊形OCDE的面積分別記為S1,S2S3,則S1:S2:S3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年五一節(jié)小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時(shí)間設(shè)他從山腳出發(fā)后所用的時(shí)間為t分鐘),所走的路程為s),s與t之間的函數(shù)關(guān)系如圖所示,下列說法錯(cuò)誤的是( )

A小明中途休息用了20分鐘

B小明休息前爬山的平均速度為每分鐘70米

C小明在上述過程中所走的路程為6600米

D小明休息前爬山的平均速度大于休息后爬山的平均速度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A90°,BC4,以BC的中點(diǎn)O為圓心分別與AB,AC相切于D、E兩點(diǎn),則的長為(  )

A. B. C. D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.

(1)求兩次傳球后,球恰在B手中的概率;

(2)求三次傳球后,球恰在A手中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到矩形FGCE,點(diǎn)M、N分別是BD、GE的中點(diǎn),若BC=14,CE=2,則MN的長( 。

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

同步練習(xí)冊答案