【題目】如圖,在平面直角坐標(biāo)系中,等腰直角△ABC,AB⊥BC,AB=BC,點C在第一象限.已知點A(m,0),B(0,n)(n>m>0),點P在線段OB上,且OP=OA.
(1)點C的坐標(biāo)為 (用含m,n的式子表示)
(2)求證:CP⊥AP.
【答案】(1)(n,m+n);(2)詳見解析.
【解析】
(1)過點C作CD⊥y軸于點D,由“AAS”可證△CDB≌△BOA,可得BO=CD=n,AO=BD=m,即可求解;
(2)由線段的和差關(guān)系可得DP=n=DC,可得∠DPC=45°,可得結(jié)論.
(1)如圖,過點C作CD⊥y軸于點D,
∴∠CDB=90°,
∴∠DCB+∠DBC=90°,且∠ABO+∠CBD=90°,
∴∠DCB=∠ABO,且AB=BC,∠CDB=∠AOB=90°,
∴△CDB≌△BOA(AAS)
∴BO=CD=n,AO=BD=m,
∴OD=m+n,
∴點C(n,m+n),
故答案為:(n,m+n);
(2)∵OP=OA=m,OD=m+n,
∴DP=n=DC,∠OPA=45°,
∴∠DPC=45°,
∴∠APC=90°,
∴AP⊥PC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點 A(﹣2,0),B(2,0),C(0,2),點 D,點E分別是 AC,BC的中點,將△CDE繞點C逆時針旋轉(zhuǎn)得到△CD′E′,及旋轉(zhuǎn)角為α,連接 AD′,BE′.
(1)如圖①,若 0°<α<90°,當(dāng) AD′∥CE′時,求α的大;
(2)如圖②,若 90°<α<180°,當(dāng)點 D′落在線段 BE′上時,求 sin∠CBE′的值;
(3)若直線AD′與直線BE′相交于點P,求點P的橫坐標(biāo)m的取值范圍(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ACDE 是證明勾股定理時用到的一個圖形,a 、b 、c 是 RtABC和 RtBED 的邊長,已知,這時我們把關(guān)于 x 的形如二次方程稱為“勾系一元二次方程”.
請解決下列問題:
(1)寫出一個“勾系一元二次方程”;
(2)求證:關(guān)于 x 的“勾系一元二次方程”,必有實數(shù)根;
(3)若 x 1是“勾系一元二次方程” 的一個根,且四邊形 ACDE 的周長是6,求ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是邊長為12的等邊三角形,點是邊上一動點,由點向點運動(與、不重合),點是延長線上一點,與點同時以相同的速度由點向延長線方向運動(點不與點重合),過點作于,連接交于點.
(1)當(dāng)時,求的長;
(2)證明:在運動過程中,點是線段的中點;
(3)點,點運動過程中線段的長是否為定值?如果線段的長為定值,求出線段的長;如果線段的長不為定值,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅紅和娜娜按如圖所示的規(guī)則玩一次“錘子、剪刀、布”游戲,下列命題中錯誤的是( )
A.紅紅不是勝就是輸,所以紅紅勝的概率為
B.紅紅勝或娜娜勝的概率相等
C.兩人出相同手勢的概率為
D.娜娜勝的概率和兩人出相同手勢的概率一樣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一條筆直的公路上有甲乙兩地相距2400米,王明步行從甲地到乙地,每分鐘走96米,李越騎車從乙地到甲地后休息2分鐘沿原路原速返回乙地.設(shè)他們同時出發(fā),運動的時間為t(分),與乙地的距離為s(米),圖中線段EF,折線OABD分別表示兩人與乙地距離s和運動時間t之間的函數(shù)關(guān)系圖象.
(1)李越騎車的速度為______米/分鐘;
(2)B點的坐標(biāo)為______;
(3)李越從乙地騎往甲地時,s與t之間的函數(shù)表達式為______;
(4)王明和李越二人______先到達乙地,先到______分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=BC=5cm,AC=6cm,點P從頂點B出發(fā),沿B→C→A以每秒1cm的速度勻速運動到A點,設(shè)運動時間為x秒,BP長度為ycm.某學(xué)習(xí)小組對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是他們的探究過程,請補充完整:
(1)通過取點,畫圖,測量,得到了x(秒)與y(cm)的幾組對應(yīng)值:
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
y | 0.0 | 1.0 | 2.0 | 3.0 | 4.0 | 4.5 | 4.1 | 4 | 4.5 | 5.0 |
要求:補全表格中相關(guān)數(shù)值(保留一位小數(shù));
(2)在平面直角坐標(biāo)系中,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)x約為______時,BP=CP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以O為位似中心將四邊形ABCD放大后得到四邊形A'B'C'D',若OA=4,OA'=8,則四邊形ABCD和四邊形A'B'C'D'的周長的比為( )
A. 1∶2 B. 1∶4
C. 2∶1 D. 4∶1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們約定:如果身高在選定標(biāo)準(zhǔn)的±2%范圍之內(nèi)都稱為“普啟遍身高”.為了了解某校九年級男生中具有“普遍身高”的人數(shù),我們從該校九年級男生中隨機抽出10名男生,分別測量出他們的身高(單位:cm),收集并整理如下統(tǒng)計表:
男生 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ |
身高x(cm) | 163 | 171 | 173 | 159 | 161 | 174 | 164 | 166 | 169 | 164 |
根據(jù)以上信息,解答如下問題:
(1)計算這組數(shù)據(jù)的三個統(tǒng)計量:平均數(shù)、中位數(shù)、眾數(shù);
(2)請你選擇其中一個統(tǒng)計量作為選定標(biāo)準(zhǔn),找出這10名男生中具有“普遍身高”是哪幾位男生?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com