【題目】《九章算術(shù)》是我國古代著名數(shù)學(xué)著作,書中記載:“今有圓材,埋在壁中,不知大小以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用數(shù)學(xué)語言可表述為:“如圖,CD為⊙O的直徑,弦AB⊥DC于E,ED=1寸,AB=10寸,求直徑CD的長.”則CD=_______寸.
【答案】26
【解析】
連接OA構(gòu)成直角三角形,先根據(jù)垂徑定理,由DE垂直AB得到點(diǎn)E為AB的中點(diǎn),由AB=10可求出AE的長,再設(shè)出圓的半徑OA為x,表示出OE,根據(jù)勾股定理建立關(guān)于x的方程,求出方程的解即可得到x的值,即為圓的半徑,把求出的半徑代入即可得到答案.
解:連接OA,∵AB⊥CD,且AB=10,
∴AE=BE=5,
設(shè)圓O的半徑OA的長為x,則OC=OD=x,
∵DE=1,
∴OE=x-1,
在直角三角形AOE中,根據(jù)勾股定理得:
x2-(x-1)2=52,化簡得:x2-x2+2x-1=25,
即2x=26,
解得:x=13;
∴CD=26(寸).
故答案為:26.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著粵港澳大灣區(qū)建設(shè)的加速推進(jìn),廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計(jì),目前廣東5G基站的數(shù)量約1.5萬座,計(jì)劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達(dá)到17.34萬座。
(1)計(jì)劃到2020年底,全省5G基站的數(shù)量是多少萬座?;
(2)按照計(jì)劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠BAD,∠ADC=∠ACB=90°,E為AB的中點(diǎn),AC與DE交于點(diǎn)F.
(1)求證:CE∥AD;
(2)求證:AC2=ABAD;
(3)若AC=2,AB=4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=8厘米,AC=16厘米,點(diǎn)P從A出發(fā),以每秒2厘米的速度向B運(yùn)動,點(diǎn)Q從C同時出發(fā),以每秒3厘米的速度向A運(yùn)動,其中一個動點(diǎn)到端點(diǎn)時,另一個動點(diǎn)也相應(yīng)停止運(yùn)動,那么,當(dāng)以A、P、Q為頂點(diǎn)的三角形與△ABC相似時,運(yùn)動時間為_________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在置于平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)是內(nèi)切圓的圓心.將沿軸的正方向作無滑動滾動,使它的三邊依次與軸重合,第一次滾動后圓心為,第二次滾動后圓心為,…,依此規(guī)律,第2020次滾動后,內(nèi)切圓的圓心的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點(diǎn)都在格點(diǎn)上.
(1)請按下列要求畫圖:
①將△ABC先向右平移5個單位,再向上平移1個單位,得到△A1B1C1,畫出△A1B1C1;
②△A2B2C2與△ABC關(guān)于原點(diǎn)O成中心對稱,畫出△A2B2C2;
(2)若(1)所得的△A1B1C1與△A2B2C2,關(guān)于點(diǎn)P成中心對稱,直接寫出對稱中心P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,對角線、相交于點(diǎn),為上動點(diǎn)(不與、重合),作,垂足為,分別交、于、,連接、.
(1)求證:;
(2)求的度數(shù);
(3)若,,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A(-2,-1),B(0,7)兩點(diǎn).
(1)求該拋物線的解析式及對稱軸;
(2)當(dāng)x為何值時,y>0?
(3)在x軸上方作平行于x軸的直線l,與拋物線交于C,D兩點(diǎn)(點(diǎn)C在對稱軸的左側(cè)),過點(diǎn)C,D作x軸的垂線,垂足分別為F,E.當(dāng)矩形CDEF為正方形時,求C點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=x+2與反比例函數(shù)y2=的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(1,a).
(1)求出k的值及點(diǎn)B的坐標(biāo);
(2)根據(jù)圖象,寫出y1>y2時x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com