如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AB=6.點(diǎn)D在AB邊上,點(diǎn)E是BC邊上一點(diǎn)(不與點(diǎn)B、C重合),且DA=DE,則AD的取值范圍是______.
以D為圓心,AD的長為半徑畫圓
①如圖1,當(dāng)圓與BC相切時,DE⊥BC時,
∵∠ABC=30°,
∴DE=
1
2
BD,
∵AB=6,
∴AD=2;
②如圖2,當(dāng)圓與BC相交時,若交點(diǎn)為B或C,則AD=
1
2
AB=3,
∴AD的取值范圍是2≤AD<3.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,圓心O在邊長為
2
的正方形ABCD的對角線BD上,⊙O過B點(diǎn)且與AD、DC邊均相切,則⊙O的半徑是( 。
A.2(
2
-1)
B.2(
2
+1)
C.2
2
-1
D.2
2
+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知正方形紙片ABCD的邊長為4,⊙O的半徑為1,圓心在正方形的中心上,將紙片按圖示方式折疊,使EA′恰好與⊙O相切于點(diǎn)A′,延長FA′交CD邊于點(diǎn)G,則A′G的長是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖⊙O的兩條弦AB、CD相交于點(diǎn)E,AC與DB的延長線交于點(diǎn)P,下列結(jié)論中成立的是( 。
A.CE•CD=BE•BAB.CE•AE=BE•DE
C.PC•CA=PB•BDD.PC•PA=PB•PD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:正方形ABCD的邊長為4,⊙O交正方形ABCD的對角線AC所在直線于點(diǎn)T,連接TO交⊙O于點(diǎn)S.

(1)如圖1,當(dāng)⊙O經(jīng)過A、D兩點(diǎn)且圓心O在正方形ABCD內(nèi)部時,連接DT、DS.
①試判斷線段DT、DS的數(shù)量關(guān)系和位置關(guān)系;
②求AS+AT的值;
(2)如圖2,當(dāng)⊙O經(jīng)過A、D兩點(diǎn)且圓心O在正方形ABCD外部時,連接DT、DS.求AS-AT的值;
(3)如圖3,延長DA到點(diǎn)E,使AE=AD,當(dāng)⊙O經(jīng)過A、E兩點(diǎn)時,連接ET、ES.根據(jù)(1)、(2)計算,通過觀察、分析,對線段
AS、AT的數(shù)量關(guān)系提出問題并解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O與點(diǎn)D,過點(diǎn)D的切線分別交AB、AC的延長線與點(diǎn)E、F.
(1)求證:AF⊥EF.
(2)小強(qiáng)同學(xué)通過探究發(fā)現(xiàn):AF+CF=AB,請你幫忙小強(qiáng)同學(xué)證明這一結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,割線ABC與⊙O相交于B、C兩點(diǎn),D為⊙O上一點(diǎn),E為弧BC的中點(diǎn),OE交BC于F,DE交AC于G,∠ADG=∠AGD,AB=2,AD=4,EG=2.
求證:∠A=60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在Rt△ABC中,∠ABC=90°,以AB上的點(diǎn)O為圓心,OB的長為半徑的圓與AB交于點(diǎn)E,與AC切于點(diǎn)D
(1)求證:BC=CD;
(2)求證:∠ADE=∠ABD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,半圓與矩形的三邊切于A、B、F,對角線AC交⊙O于點(diǎn)E,若⊙O的直徑為8cm,則CE=______cm.

查看答案和解析>>

同步練習(xí)冊答案