【題目】如圖1,拋物線與軸交于點、兩點,與軸交于點.
(1)求該拋物線的解析式;
(2)在該拋物線的對稱軸上是否存在點,使得的周長最。咳舸嬖,求出點的坐標;若不存在,請說明理由.
【答案】(1);(2)存在,
【解析】
(1)利用待定系數法求出拋物線解析式即可;
(2)由題知A、B兩點關于拋物線的對稱x=-1對稱,直線BC與x=-1的交點即為Q點,此時△AQC周長最小,首先求出直線BC的解析式,進而得出Q點坐標即為
的解,即可得出答案.
(1)將A(1,0),B(3,0)代中得
,
∴解得:,
∴拋物線解析式為:;
(2))存在,
理由如下:由題知A. B兩點關于拋物線的對稱軸x=1對稱,
∴直線BC與x=1的交點即為Q點,此時△AQC周長最小
∵,
∵C的坐標為:(0,3),B(3,0),設直線BC解析式為:y=kx+d,
∴,
解得:,
∴直線BC解析式為:y=x+3;
Q點坐標即為的解,
∴,
∴Q(1,2).
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,矩形的頂點與原點重合,、分別在坐標軸上,,,直線交,分別于點,,反比例函數的圖象經過點,.
(1)求反比例函數的解析式;
(2)直接寫出當時,的取值范圍;
(3)若點在軸上,且的面積與四邊形的面積相等,求點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)(操作發(fā)現)
如圖1,將△ABC繞點A順時針旋轉50°,得到△ADE,連接BD,則∠ABD= 度.
(2)(解決問題)
①如圖2,在邊長為的等邊三角形ABC內有一點P,∠APC=90°,∠BPC=120°,求△APC的面積.
②如圖3,在△ABC中,∠ACB=90°,AC=BC,P是△ABC內的一點,若PB=1,PA=3,∠BPC=135°,則PC= .
(3)(拓展應用)
如圖4是A,B,C三個村子位置的平面圖,經測量AB=4,BC=3,∠ABC=75°,P為△ABC內的一個動點,連接PA,PB,PC.求PA+PB+PC的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數的與的部分對應值如下表:
-1 | 0 | 1 | 3 | |
-3 | 1 | 3 | 1 |
下列結論:①拋物線的開口向下;②其圖象的對稱軸為;③當時,函數值隨的增大而增大;④方程有一個根大于4.其中正確的結論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,,,動點P從點A出發(fā),在AC上以每秒5cm的速度向點C勻速運動,同時動點Q從點D出發(fā),在DA邊上以每秒4cm的速度向點A勻速運動,運動時間為t秒(),連接PQ.
(1)若△APQ與△ADC相似,求t的值;
(2)連結CQ,DP,若,求t的值;
(3)連結BQ,PD,請問BQ能和PD平行嗎?若能,求出t的值:若不能,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市某幼兒園六一期間舉行親子游戲,主持人請三位家長分別帶自己的孩子參加游戲,主持人準備把家長和孩子重新組合完成游戲,A、B、C分別表示三位家長,他們的孩子分別對應的是a、b、c.
(1)若主持人分別從三位家長和三位孩子中各選一人參加游戲,恰好是A、a的概率是多少(直接寫出答案)
(2)若主持人先從三位家長中任選兩人為一組,再從孩子中任選兩人為一組,四人共同參加游戲,恰好是兩對家庭成員的概率是多少.(畫出樹狀圖或列表)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形的邊長為,點與原點重合點在軸的正半軸上,點在軸的負半軸上,將正方形ABCD繞點A逆時針旋轉30°至正方形AB′C′D′的位置,B′C′與CD相交于點M,則點M的坐標為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BM切⊙O于點B,點P是⊙O上的一個動點(點P不與A,B兩點重合),連接AP,過點O作OQ∥AP交BM于點Q,過點P作PE⊥AB于點C,交QO的延長線于點E,連接PQ,OP.
(1)求證:△BOQ≌△POQ;
(2)若直徑AB的長為12.
①當PE= 時,四邊形BOPQ為正方形;
②當PE= 時,四邊形AEOP為菱形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com