【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)AC,與AB交于點(diǎn)D

(1)求拋物線的函數(shù)解析式;

(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQCP,連接PQ,設(shè)CPm,△CPQ的面積為S

S關(guān)于m的函數(shù)表達(dá)式;

當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請說明理由.

【答案】(1)拋物線的解析式為y=﹣x2+x+8;(2)S=﹣m2+3m;②滿足條件的點(diǎn)F共有四個(gè),坐標(biāo)分別為F1(8),F2(,4)F3(,6+)F4(,6)

【解析】

1)運(yùn)用待定系數(shù)法求解;(2)①根據(jù)三角函數(shù)值性質(zhì)得;②求函數(shù)的最值,根據(jù)拋物線性質(zhì)求出D,Q的坐標(biāo),根據(jù)直角的位置有3種可能,展開分析,解直角三角形.

(1)A、C兩點(diǎn)坐標(biāo)代入拋物線,得

,

解得:

∴拋物線的解析式為y

(2)①∵OA8,OC6

AC

過點(diǎn)QQEBCE點(diǎn),則sinACB

∴當(dāng)m5時(shí),S取最大值;

在拋物線對稱軸l上存在點(diǎn)F,使△FDQ為直角三角形,

∵拋物線的解析式為y的對稱軸為x,

D的坐標(biāo)為(3,8),Q(3,4),

當(dāng)∠FDQ90°時(shí),F1(8),

當(dāng)∠FQD90°時(shí),則F2(,4),

當(dāng)∠DFQ90°時(shí),設(shè)F(n),

FD2+FQ2DQ2,

+(8n)2+ +(n4)216,

解得:n6±,

F3(,6+ ),F4(6),

滿足條件的點(diǎn)F共有四個(gè),坐標(biāo)分別為

F1(,8),F2(,4),F3(,6+ ),F4(,6)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,函數(shù)y1kx+b的圖象與函數(shù)x0)的圖象交于Aa2,3)、B(﹣3,a)兩點(diǎn).

1)求函數(shù)y1y2的表達(dá)式;

2)過AAMy軸,過BBNx軸,試問在線段AB上是否存在點(diǎn)P,使SPAM3SPBN?若存在,請求出P點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加班長競選,需進(jìn)行演講答辯與民主測評,民主測評時(shí)一人一票,按“優(yōu)秀、良好、一般”三選一投票.如圖是7位評委對小明“演講答辯”的評分統(tǒng)計(jì)圖及全班50位同學(xué)民主測評票數(shù)統(tǒng)計(jì)圖.

(1)求評委給小明演講答辯分?jǐn)?shù)的眾數(shù),以及民主測評為“良好”票數(shù)的扇形圓心角度數(shù);

(2)求小明的綜合得分是多少?

(3)在競選中,小亮的民主測評得分為82分,如果他的綜合得分不小于小明的綜合得分,他的演講答辯得分至少要多少分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在爭創(chuàng)“全國文明城市”活動(dòng)中,組織全體學(xué)生參加了“創(chuàng)文”知識競賽,為了解各年級成績情況,學(xué)校這樣做的:

(收集數(shù)據(jù))從七、八、九三個(gè)年級的競賽成績中各隨機(jī)抽取了10名學(xué)生成績?nèi)缦卤恚?/span>

七年級

60

70

60

100

80

70

80

60

40

90

八年級

80

80

100

40

70

60

80

90

50

80

九年級

70

50

60

90

100

80

80

90

70

70

(整理、描述數(shù)據(jù))(說明:80x100為優(yōu)秀,60x80為合格,40x60為一般)

年級

40x60

60x80

80x100

七年級

1

5

4

八年級

2

2

6

九年級

1

4

5

年級

平均數(shù)

眾數(shù)

中位數(shù)

七年級

a

60

70

八年級

73

b

80

九年級

76

70

c

(分析數(shù)據(jù))三組樣本數(shù)據(jù)的平均分、眾數(shù)、中位數(shù)如上表所示,其中a   ,b   ,c   

(得出結(jié)論)請你根據(jù)以上信息,推斷你認(rèn)為成績好的年級,并說明理由(至少從兩個(gè)角度說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AC=BC=3cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以cm/s的速度沿AB方向運(yùn)動(dòng)到點(diǎn)B.動(dòng)點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),以1cm/s的速度沿折線ACCB方向運(yùn)動(dòng)到點(diǎn)B.設(shè)APQ的面積為y(cm2).運(yùn)動(dòng)時(shí)間為x(s),則下列圖象能反映yx之間關(guān)系的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A11)在直線y=kx上,過點(diǎn)A1A1B1y軸交直線y=x于點(diǎn)B1,以A1B1為邊在A1B1的右側(cè)作正方形A1B1C1D1,直線C1D1分別交直線y=kxy=xA2B2兩點(diǎn),以A2B2為邊在A2B2的右側(cè)作等正方形A2B2C2D2…,直線C2D2分別交直線y=kxy=xA3,B3兩點(diǎn),以A3B3為邊在A3B3的右側(cè)作正方形A3B3C3D3,…,按此規(guī)律進(jìn)行下去,則正方形AnBnCnDn的面積為____________.(用含正整數(shù)n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+c的頂點(diǎn)為C,對稱軸為直線x=1,且經(jīng)過點(diǎn)A3,-1),與y軸交于點(diǎn)B

1)求拋物線的解析式;

2)判斷ABC的形狀,并說明理由;

3)經(jīng)過點(diǎn)A的直線交拋物線于點(diǎn)P,交x軸于點(diǎn)Q,若SOPA=2SOQA,試求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了貫徹落實(shí)《關(guān)于開展全市義務(wù)教育學(xué)生體質(zhì)抽測工作的通知》精神,推進(jìn)青少年茁壯成長工程,我市決定繼續(xù)開展市直初中生體質(zhì)抽測工作。我校初三某班被抽中,已知各人選測項(xiàng)目為下列選項(xiàng)中的任意一項(xiàng):引體向上(男生)、仰臥起坐(女生)、立定跳遠(yuǎn)(男、女生),坐位體前屈(男、女生)。

1)男生小磊抽測引體向上的概率是 ;

2)用樹狀圖或列表法求男生小磊與女生小銘恰好都抽測坐位體前屈的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),∠BAD=∠BAC=60°,于是;
遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點(diǎn)在同一條直線上,連接BD.
(1)求證:△ADB≌△AEC;
(2)若AD=2,BD=3,請計(jì)算線段CD的長;
拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對稱點(diǎn)E,連接AE并延長交BM于點(diǎn)F,連接CE,CF.
(3)證明:△CEF是等邊三角形;
(4)若AE=4,CE=1,求BF的長.

查看答案和解析>>

同步練習(xí)冊答案