【題目】如圖,將矩形紙片ABCD(AD>AB)折疊,使點C剛好落在線段AD上,且折痕分別與邊BC,AD相交,設(shè)折疊后點C,D的對應(yīng)點分別為點G,H,折痕分別與邊BC,AD相交于點E,F(xiàn).
(1)判斷四邊形CEGF的形狀,并證明你的結(jié)論;
(2)若AB=3,BC=9,求線段CE的取值范圍.
【答案】(1)四邊形CEGF為菱形,理由詳見解析;(2)3≤CE≤5.
【解析】
試題分析:(1)根據(jù)折疊的性質(zhì),易證△EFG是等腰三角形,根據(jù)等腰三角形的性質(zhì)可得GF=EC,又由GF∥EC,即可得四邊形CEGF為平行四邊形,根據(jù)鄰邊相等的平行四邊形是菱形,即可得四邊形BGEF為菱形;(2)如圖1,當(dāng)G與A重合時,CE取最大值,由折疊的性質(zhì)得CD=DG,∠CDE=∠GDE=45°,推出四邊形CEGD是矩形,根據(jù)矩形的性質(zhì)即可得到CE=CD=AB=3;如圖2,當(dāng)F與D重合時,CE取最小值,由折疊的性質(zhì)得AE=CE,根據(jù)勾股定理即可得到結(jié)論.
試題解析:(1)證明:∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠GFE=∠FEC,
∵圖形翻折后點G與點C重合,EF為折線,
∴∠GEF=∠FEC,
∴∠GFE=∠FEG,
∴GF=GE,
∵圖形翻折后BC與GE完全重合,
∴BE=EC,
∴GF=EC,
∴四邊形CEGF為平行四邊形,
∴四邊形CEGF為菱形;
(2)解:如圖1,當(dāng)F與D重合時,CE取最小值,
由折疊的性質(zhì)得CD=DG,∠CDE=∠GDE=45°,
∵∠ECD=90°,
∴∠DEC=45°=∠CDE,
∴CE=CD=DG,
∵DG∥CE,
∴四邊形CEGD是矩形,
∴CE=CD=AB=3;
如圖2,當(dāng)G與A重合時,CE取最大值,
由折疊的性質(zhì)得AE=CE,
∵∠B=90°,
∴AE2=AB2+BE2,即CE2=32+(9﹣CE)2,
∴CE=5,
∴線段CE的取值范圍3≤CE≤5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△OMN中,∠MON=90°,OM=6cm,∠OMN=30°.等邊△ABC的頂點B與點O重合,BC在OM上,點A恰好在MN上.
(1)求等邊△ABC的邊長;
(2)如圖2,將等邊△ABC沿OM方向以1cm/s的速度平移,邊AB、AC分別與MN交于點E、F,在△ABC平移的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿折線B→A→C運動,當(dāng)點P達到點C時,點P停止運動,△ABC也隨之停止平移.設(shè)△ABC平移時間為t(s)
①用含t的代數(shù)式表示AE的長,并寫出t的取值范圍;
②在點P沿折線B→A→C運動的過程中,是否在某一時刻,點P、E、F組成的三角形為等腰三角形?若存在,求出此時t值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張長方形的紙對折,可得到一條折痕(圖中虛線),繼續(xù)對折,對折時每次折痕與上次的折痕保持平行,連續(xù)對折3次后,可以得到7條折痕,那么對折4次可以得到多少條折痕?如果對折n次呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】服裝店銷售某款服裝,一件服裝的標(biāo)價為300元,若按標(biāo)價的八折銷售,仍可獲利60元,則這款服裝每件的標(biāo)價比進價多
A. 60元 B. 80元 C. 120元 D. 180元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,已知AD>AB.
(1)實踐與操作:作∠BAD的平分線交BC于點E,在AD上截取AF=AB,連接EF;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)猜想并證明:猜想四邊形ABEF的形狀,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對三角形的高、中線和角平分線概念理解錯誤的是( )
A.直角三角形只有一條高
B.鈍角三角形有兩條高在三角形外部
C.銳角三角形的三條高、三條中線、三條角平分線分別交于一點
D.任意三角形都有三條高、三條中線、三條角平分線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016湖北襄陽第24題)
如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交AF于點G,連接DG.
(1)求證:四邊形EFDG是菱形;
(2)探究線段EG,GF,AF之間的數(shù)量關(guān)系,并說明理由;
(3)若AG=6,EG=2,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com