精英家教網(wǎng)如圖:已知在等邊三角形ABC中,點D、E分別是AC、CB延長線上的點,且CD=BE,連接DB并延長DB交AE于點F.
求證:DA2=DB•DF.
分析:欲證DA2=DB•DF,可證△ADB∽△FDA,通過觀察發(fā)現(xiàn)兩個三角形證∠DBA=∠DAF,∠ADB=∠FDA即可.
解答:證明:∵△ABC是等邊三角形,
∴∠CAB=∠ACB=∠ABC,AB=BC,(1分)
∵∠ACB=∠ABC,
∴∠DCB=∠EBA,(1分)
在△DCB與△EBA中,
DC=EB
∠DCB=∠EBA
AB=BC
,
∴△DCB≌△EBA,(2分)
∴∠DBC=∠EAB(,1分)
∵∠CBA=∠CAB,
∴∠CBA+∠DBC=∠CAB+∠EAB,
即∠DBA=∠DAF,(1分)
又∵∠ADB=∠FDA,
∴△ADB∽△FDA,(1分)
DB
DA
=
DA
DF
,(1分)
∴DA2=DB•DF.(2分)
點評:本題考查相似三角形的判定.識別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對應邊、對應角,可利用數(shù)形結(jié)合思想根據(jù)圖形提供的數(shù)據(jù)計算對應角的度數(shù)、對應邊的比.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

.如圖,在平面直角坐標系中,已知點A(0,2),點P是x軸上一動點,以線段AP為一邊,在其一側(cè)作等邊三角線APQ。當點P運動到原點O處時,記Q得位置為B。

(1)求點B的坐標;

(2)求證:當點P在x軸上運動(P不與Q重合)時,∠ABQ為定值;

(3)是否存在點P,使得以A、O、Q、B為頂點的四邊形是梯形?若存在,請求出P點的坐標;若不存在,請說明理由。

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

.如圖,在平面直角坐標系中,已知點A(0,2),點P是x軸上一動點,以線段AP為一邊,在其一側(cè)作等邊三角線APQ。當點P運動到原點O處時,記Q得位置為B。
(1)求點B的坐標;
(2)求證:當點P在x軸上運動(P不與Q重合)時,∠ABQ為定值;
(3)是否存在點P,使得以A、O、Q、B為頂點的四邊形是梯形?若存在,請求出P點的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆山東勝利七中九年級中考二模數(shù)學試卷(帶解析) 題型:解答題

如圖,在平面直角坐標系中,已知點A(0,2),點P是x軸上一動點,以線段AP為一邊,在其一側(cè)作等邊三角線APQ.當點P運動到原點O處時,記Q的位置為B.
(1)求點B的坐標;
(2)求證:當點P在x軸上運動(P不與O重合)時,∠ABQ為定值;

(3)是否存在點P,使得以A、O、Q、B為頂點的四邊形是梯形?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(湖北黃岡卷)數(shù)學 題型:解答題

.如圖,在平面直角坐標系中,已知點A(0,2),點P是x軸上一動點,以線段AP為一邊,在其一側(cè)作等邊三角線APQ。當點P運動到原點O處時,記Q得位置為B。

(1)求點B的坐標;

(2)求證:當點P在x軸上運動(P不與Q重合)時,∠ABQ為定值;

(3)是否存在點P,使得以A、O、Q、B為頂點的四邊形是梯形?若存在,請求出P點的坐標;若不存在,請說明理由。

 

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年北京市考數(shù)學一模試卷 題型:選擇題

已知:如圖,在等邊三角形ABC中,M、N分別是AB、AC的中點,D是MN上任意一點,CD、BD的延長線分別與AB、AC交于F、E,若 ,則等邊三角

 

形ABC的邊長為

 

A.         B.              C.               D.1

 

 

查看答案和解析>>

同步練習冊答案