【題目】已知拋物線yax2bxca≠0)的對稱軸為直線x2,與x軸的一個交點坐標為(40),其部分圖象如圖所示,下列結論正確的是( 。

A.x2時,yx增大而增大B.abc0

C.拋物線過點(-40D.4ab0

【答案】D

【解析】

根據(jù)二次函數(shù)的性質以及圖象對各項進行判斷即可.

A. 對稱軸為直線x2,根據(jù)二次函數(shù)的增減性可得,當x2時,yx增大而減小,錯誤;

B. 對稱軸為直線x2,與x軸的一個交點坐標為(4,0),可得x軸的另一個交點坐標為(0,0),故當x=-1,,錯誤;

C. 對稱軸為直線x2,與x軸的一個交點坐標為(40),可得x軸的另一個交點坐標為(0,0),且拋物線與x軸有且只有兩個交點,錯誤;

D. 對稱軸為直線x2,可得,即4ab0,正確;

故答案為:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了解學生每天完成家庭作業(yè)所用時間的情況,隨機抽取了部分學生進行調查,并將所得數(shù)據(jù)進行整理,制作成條形統(tǒng)計圖和扇形統(tǒng)計圖如下:

1)扇形統(tǒng)計圖中扇形的圓心角的度數(shù)為______;

2)補全條形統(tǒng)計圖;

3)若該中學有2000名學生,請估計有多少名學生能在1.5小時以內完成家庭作業(yè)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系中的兩個圖形K1K2,給出如下定義:點G為圖形K1上任意一點,點HK2圖形上任意一點,如果G,H兩點間的距離有最小值,則稱這個最小值為圖形K1K2近距離。如圖1,已知ABCA-1,-8),B9,2),C-1,2),邊長為的正方形PQMN,對角線NQ平行于x軸或落在x軸上.

1)填空:

①原點O與線段BC近距離

②如圖1,正方形PQMNABC內,中心O’坐標為(m,0),若正方形PQMNABC的邊界的近距離1,則m的取值范圍為 ;

2)已知拋物線C,且-1≤x≤9,若拋物線CABC近距離1,求a的值;

3)如圖2,已知點D為線段AB上一點,且D5-2),將ABC繞點A順時針旋轉α0<α≤180),將旋轉中的ABC記為AB’C’,連接DB’,點EDB’的中點,當正方形PQMN中心O’坐標為(5,-6),直接寫出在整個旋轉過程中點E運動形成的圖形與正方形PQMN近距離

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某縣建檔立卡貧困戶對精準扶貧政策落實的滿意度,現(xiàn)從全縣建檔立卡貧困戶中隨機抽取了部分貧困戶進行了調查(把調查結果分為四個等級:A級:非常滿意;B級:滿意;C級:基本滿意;D級:不滿意),并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解決下列問題:

1)本次抽樣調查測試的建檔立卡貧困戶的總戶數(shù)______.

2)圖1中,∠α的度數(shù)是______,并把圖2條形統(tǒng)計圖補充完整.

3)某縣建檔立卡貧困戶有10000戶,如果全部參加這次滿意度調查,請估計非常滿意的人數(shù)約為多少戶?

4)調查人員想從5戶建檔立卡貧困戶(分別記為)中隨機選取兩戶,調查他們對精準扶貧政策落實的滿意度,請用列表或畫樹狀圖的方法求出選中貧困戶的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長;中華詩詞,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,我市某校團委組織了一次全校2000名學生參加的中國詩詞大會海選比賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分,為了更好地了解本次海選比賽的成績分布情況,隨機抽取了其中200名學生的海選比賽成績成績x取整數(shù),總分100分作為樣本進行整理,得到下列統(tǒng)計圖表:

抽取的200名學生海選成績分組表

組別

海選成績x

A組

50x<60

B組

60x<70

C組

70x<80

D組

80x<90

E組

90x<100

請根據(jù)所給信息,解答下列問題:

1請把圖1中的條形統(tǒng)計圖補充完整;溫馨提示:請畫在答題卷相對應的圖上

2在圖2的扇形統(tǒng)計圖中,記表示B組人數(shù)所占的百分比為a%,則a的值為 ,表示C組扇形的圓心角θ的度數(shù)為 度;

3規(guī)定海選成績在90分以上包括90分記為優(yōu)等,請估計該校參加這次海選比賽的2000名學生中成績優(yōu)等的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,直線y=﹣x+與坐標軸交與點A、B.點Cx軸的負半軸上,且ABAC12

1)求A、C兩點的坐標;

2)若點M從點C出發(fā),以每秒1個單位的速度沿射線CB運動,連接AM,設△ABM的面積為S,點M的運動時間為t,寫出S關于t的函數(shù)關系式,并寫出自變量的取值范圍;

3)點Py軸上的點,在坐標平面內是否存在點Q,使以AB、PQ為頂點,且以AB為邊的四邊形是菱形,若存在,請直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y2x+2y軸交于A點,與反比例函數(shù)yx0)的圖象交于點M,過MMHx軸于點H,且tanAHO2

1)求H點的坐標及k的值;

2)點Py軸上,使△AMP是以AM為腰的等腰三角形,請直接寫出所有滿足條件的P點坐標;

3)點Na,1)是反比例函數(shù)yx0)圖象上的點,點Qm,0)是x軸上的動點,當△MNQ的面積為3時,請求出所有滿足條件的m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究:

如圖1,拋物線軸交于兩點(點在點的左側),頂點為,為對稱軸右側拋物線的一個動點,直線軸于點,過點,交軸于點

1)求直線的函數(shù)表達式及點的坐標;

2)如圖2,當軸時,將以每秒1個單位長度的速度沿軸的正方向平移,當點與點重合時停止平移.設平移秒時,在平移過程中與四邊形重疊部分的面積為,求關于的函數(shù)關系式,并寫出自變量的取值范圍;

3)如圖3,過點軸的平行線,交直線于點,直線交于點,設點的橫坐標為

①當時,求的值;

②試探究點在運動過程中,是否存在值,使四邊形是菱形?若存在,請直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們學習了勾股定理后,都知道勾三、股四、弦五”.

觀察:3、4、5;5、12、13;7、24、25;9、40、41;…,發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過.

(1)請你根據(jù)上述的規(guī)律寫出下一組勾股數(shù):________

(2)若第一個數(shù)用字母n(n為奇數(shù),且n≥3)表示,那么后兩個數(shù)用含n的代數(shù)式分別表示為________________,請用所學知識說明它們是一組勾股數(shù).

查看答案和解析>>

同步練習冊答案