【題目】夏季空調(diào)銷(xiāo)售供不應(yīng)求,某空調(diào)廠接到一份緊急訂單,要求在10天內(nèi)(含10天)完成任務(wù),為提高生產(chǎn)效率,工廠加班加點(diǎn),接到任務(wù)的第一天就生產(chǎn)了空調(diào)42臺(tái),以后每天生產(chǎn)的空調(diào)都比前一天多2臺(tái),由于機(jī)器損耗等原因,當(dāng)日生產(chǎn)的空調(diào)數(shù)量達(dá)到50臺(tái)后,每多生產(chǎn)一臺(tái),當(dāng)天生產(chǎn)的所有空調(diào),平均每臺(tái)成本就增加20元.
(1)設(shè)第x天生產(chǎn)空調(diào)y臺(tái),直接寫(xiě)出y與x之間的函數(shù)解析式,并寫(xiě)出自變量x的取值范圍.
(2)若每臺(tái)空調(diào)的成本價(jià)(日生產(chǎn)量不超過(guò)50臺(tái)時(shí))為2000元,訂購(gòu)價(jià)格為每臺(tái)2920元,設(shè)第x天的利潤(rùn)為W元,試求W與x之間的函數(shù)解析式,并求工廠哪一天獲得的利潤(rùn)最大,最大利潤(rùn)是多少.

【答案】
(1)解:∵接到任務(wù)的第一天就生產(chǎn)了空調(diào)42臺(tái),以后每天生產(chǎn)的空調(diào)都比前一天多2臺(tái),

∴由題意可得出,第x天生產(chǎn)空調(diào)y臺(tái),y與x之間的函數(shù)解析式為:y=40+2x(1≤x≤10);


(2)解:當(dāng)1≤x≤5時(shí),W=(2920﹣2000)×(40+2x)=1840x+36800,

∵1840>0,

∴W隨x的增大而增大,

∴當(dāng)x=5時(shí),W最大值=1840×5+36800=46000;

當(dāng)5<x≤10時(shí),

W=[2920﹣2000﹣20(40+2x﹣50)]×(40+2x)=﹣80(x﹣4)2+46080,

此時(shí)函數(shù)圖象開(kāi)口向下,在對(duì)稱(chēng)軸右側(cè),W隨著x的增大而減小,又天數(shù)x為整數(shù),

∴當(dāng)x=6時(shí),W最大值=45760元.

∵46000>45760,

∴當(dāng)x=5時(shí),W最大,且W最大值=46000元.

綜上所述:W=


【解析】(1)根據(jù)接到任務(wù)的第一天就生產(chǎn)了空調(diào)42臺(tái),以后每天生產(chǎn)的空調(diào)都比前一天多2臺(tái),直接得出生產(chǎn)這批空調(diào)的時(shí)間為x天,與每天生產(chǎn)的空調(diào)為y臺(tái)之間的函數(shù)關(guān)系式;(2)根據(jù)基本等量關(guān)系:利潤(rùn)=(每臺(tái)空調(diào)訂購(gòu)價(jià)﹣每臺(tái)空調(diào)成本價(jià)﹣增加的其他費(fèi)用)×生產(chǎn)量即可得出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,射線(xiàn)OA的方向是北偏東20°,射線(xiàn)OB的方向是北偏西40°,ODOB的反向延長(zhǎng)線(xiàn).若OC是∠AOD的平分線(xiàn),則∠BOC=_____°,射線(xiàn)OC的方向是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將連續(xù)的奇數(shù)1,3,5,7,9…排成如下的數(shù)表:

(1)十字框中的五個(gè)數(shù)的平均數(shù)與15有什么關(guān)系?

(2)若將十字框上下左右平移,可框住另外的五個(gè)數(shù),這五個(gè)數(shù)的和能等于315嗎?若能,請(qǐng)求出這五個(gè)數(shù);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上三點(diǎn)A,O,B表示的數(shù)分別為6,0,-4,動(dòng)點(diǎn)PA出發(fā),以每秒6個(gè)單位的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng).

1)當(dāng)點(diǎn)P到點(diǎn)A的距離與點(diǎn)P到點(diǎn)B的距離相等時(shí),點(diǎn)P在數(shù)軸上表示的數(shù)是 ;

2)另一動(dòng)點(diǎn)RB出發(fā),以每秒4個(gè)單位的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)PR同時(shí)出發(fā),問(wèn)點(diǎn)P運(yùn)動(dòng)多少時(shí)間追上點(diǎn)R?

3)若MAP的中點(diǎn),NPB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線(xiàn)段MN的長(zhǎng)度是否發(fā)生變化?若發(fā)生變化,請(qǐng)你說(shuō)明理由;若不變,請(qǐng)你畫(huà)出圖形,并求出線(xiàn)段MN的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=4x+4x、y軸分別相交于點(diǎn)A、B,四邊形ABCD是正方形,拋物線(xiàn)過(guò)C,D兩點(diǎn),且C為頂點(diǎn),則a的值為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=36°,DE是線(xiàn)段AC的垂直平分線(xiàn),若BE=a,AE=b,則用含a、b的代數(shù)式表示△ABC的周長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OABC為矩形,點(diǎn)B坐標(biāo)為(4,2),A,C分別在x軸,y軸上,點(diǎn)F在第一象限內(nèi),OF的長(zhǎng)度不變,且反比例函數(shù)經(jīng)過(guò)點(diǎn)F.

(1)如圖1,當(dāng)F在直線(xiàn)y = x上時(shí),函數(shù)圖象過(guò)點(diǎn)B,求線(xiàn)段OF的長(zhǎng).

(2)如圖2,若OF從(1)中位置繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),反比例函數(shù)圖象與BC,AB相交,交點(diǎn)分別為D,E,連結(jié)OD,DE,OE.

①求證:CD=2AE.

②若AE+CD=DE,求k.

③設(shè)點(diǎn)F的坐標(biāo)為(a,b),當(dāng)ODE為等腰三角形時(shí),求(a+b)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線(xiàn)y=x+1與拋物線(xiàn)y=2x2相交于A、B兩點(diǎn),與y軸交于點(diǎn)M,M、N關(guān)于x軸對(duì)稱(chēng),連接AN、BN.

(1)①求A、B的坐標(biāo);②求證:∠ANM=∠BNM;
(2)如圖2,將題中直線(xiàn)y=x+1變?yōu)閥=kx+b(b>0),拋物線(xiàn)y=2x2變?yōu)閥=ax2(a>0),其他條件不變,那么∠ANM=∠BNM是否仍然成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,高速公路的同一側(cè)有A、B兩城鎮(zhèn),它們到高速公路所在直線(xiàn)MN的距離分別為AA′=2 km,BB′=4 km,且A′B′=8 km.

(1)要在高速公路上A′、B′之間建一個(gè)出口P,使A、B兩城鎮(zhèn)到P的距離之和最小.請(qǐng)?jiān)趫D中畫(huà)出P的位置,并作簡(jiǎn)單說(shuō)明.

(2)求這個(gè)最短距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案