【題目】如圖,在菱形ABCD中,∠ADC60°CD4cmPCD的中點.

1)在AC上找一點Q,使DQ+PQ的值最。ūA舢媹D痕跡,不寫畫法,不必說理);

2)求出(1)中DQ+PQ的長.

【答案】1)見解析;(22cm

【解析】

1)如圖,連接 PB AC 于點 Q,點 Q 是所求作的;

2)連接 PA.證明PAB 是直角三角形,利用勾股定理求出 PB 即可;

解:(1)如圖,連接 PB AC 于點 Q,點 Q 是所求作的;

2)連結 AP

在菱形 ABCD 中,ABADCD4cm,又∵∠ADC60°

∴△ACD 為等邊三角形,

P CD 的中點,

APCD,DP CD2 cm, RtADP 中,

AP6cm),

APCD,ABCD,

APAB,

RtABP 中,BPcm),

在菱形 ABCD 中,ACBD,OBOD

DQBQ

DQ+PQBQ+PQBP2cm).

答:DQ+PQ 的長為 2cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知二次函數(shù)(為常數(shù),)的圖象過點和點,函數(shù)圖象最低點的縱坐標為.直線的解析式為

求二次函數(shù)的解析式;

直線沿軸向右平移,得直線,與線段相交于點,與軸下方的拋物線相交于點,過點軸于點,把沿直線折疊,當點恰好落在拋物線上點(求直線的解析式;

的條件下,軸交于點,把繞點逆時針旋轉(zhuǎn)得到,P上的動點,當為等腰三角形時,求符合條件的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,以RtABC的斜邊BC為一邊在ABC的同側(cè)作正方形BCEF,設正方形的中心為O,連接AO,如果AB=4,AO=6,那么AC=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在等腰△ABC中,ABAC10cm,BC16cm.點D由點A出發(fā)沿AB方向向點B勻速運動,同時點E由點B出發(fā)沿BC方向向點C勻速運動,它們的速度均為1cm/s.連接DE,設運動時間為ts)(0t10),解答下列問題:

1)當t為何值時,△BDE的面積為7.5cm2;

2)在點D,E的運動中,是否存在時間t,使得△BDE與△ABC相似?若存在,請求出對應的時間t;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,為邊上的一個(不與、重合)點,且相交于點

1)填空:______;______

2)當時,證明:

3面積的最小值是_______

4)當的內(nèi)心在的外部時,直接寫出的范圍______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義一種對正整數(shù)n的“F”運算:①當n為奇數(shù)時,Fn=3n+1;②當n為偶數(shù)時,Fn=(其中k是使Fn)為奇數(shù)的正整數(shù))……,兩種運算交替重復進行,例如,取n=24,則:

n=24,則第2019次“F”運算的結果是(

A.4B.1C.2018D.42018

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件8元,出廠價為每件10元,每月銷售量y(件)與銷售單價x(元)之間的關系近似滿足一次函數(shù):y=-10x+500

1)李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為20元,那么政府這個月為他承擔的總差價為多少元?

2)設李明獲得的利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?

3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元.如果李明想要每月獲得的利潤不低于3410元,那么政府為他承擔的總差價最少為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,矩形ABCD中,AB5,BC8,點PBC上一動點(不與端點重合),連接AP,將ABP沿著AP折疊.點B落到M處,連接BMCM,若BMC為等腰三角形,則BP的長度為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了鼓勵城市周邊的農(nóng)民的種菜的積極性,某公司計劃新建,兩種溫室80棟,將其售給農(nóng)民種菜.已知建1型溫室和2型溫室一共需要8.1萬元,兩種溫室的成本和出售價如下表:

成本(萬元/棟)

2.5

出售價(萬元/棟)

3.1

3.5

1)求的值;

2)已知新建型溫室不少于38棟不多于50棟且所建的兩種溫室可全部售出.為了減輕菜農(nóng)負擔,試問采用什么方案建設溫室可使利潤最少,最少利潤是多少?

查看答案和解析>>

同步練習冊答案